首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute liver failure (ALF) is a life-threatening illness. The extracorporeal cell-based bioartificial liver (BAL) system could bridge liver transplantation and facilitate liver regeneration for ALF patients by providing metabolic detoxification and synthetic functions. Previous BAL systems, based on hepatoma cells and non-human hepatocytes, achieved limited clinical advances, largely due to poor hepatic functions, cumbersome preparation or safety concerns of these cells. We previously generated human functional hepatocytes by lineage conversion (hiHeps). Here, by improving functional maturity of hiHeps and producing hiHeps at clinical scales (3 billion cells), we developed a hiHep-based BAL system (hiHep-BAL). In a porcine ALF model, hiHep-BAL treatment restored liver functions, corrected blood levels of ammonia and bilirubin, and prolonged survival. Importantly, human albumin and α-1-antitrypsin were detectable in hiHep-BAL-treated ALF pigs. Moreover, hiHep-BAL treatment led to attenuated liver damage, resolved inflammation and enhanced liver regeneration. Our findings indicate a promising clinical application of the hiHep-BAL system.  相似文献   

2.
Ammonia reduction is the target for therapy of hepatic encephalopathy, but lack of quantitative data about how the individual organs handle ammonia limits our ability to develop novel therapeutic strategies. The study aims were to evaluate interorgan ammonia metabolism quantitatively in a devascularized pig model of acute liver failure (ALF). Ammonia and amino acid fluxes were measured across the portal drained viscera (PDV), kidneys, hind leg, and lungs in ALF pigs. ALF pigs developed hyperammonemia and increased glutamine levels, whereas glutamate levels were decreased. PDV contributed to the hyperammonemic state mainly through increased shunting and not as a result of increased glutamine breakdown. The kidneys were quantitatively as important as PDV in systemic ammonia release, whereas muscle took up ammonia. Data suggest that the lungs are able to remove ammonia from the circulation during the initial stage of ALF. Our study provides new data supporting the concept of glutamate deficiency in a pig model of ALF. Furthermore, the kidneys are quantitatively as important as PDV in ammonia production, and the muscles play an important role in ammonia removal.  相似文献   

3.
Difficulties associated with bioartificial liver (BAL) preservation limit not only the commercialization of BAL, but also its clinical trials. In this study, the possibility of cold preservation of BAL cartridges containing porcine hepatocytes was examined at 4 °C. In anin vitro perfusion culture system, BAL cartridges maintained cytochrome P450 metabolic function for at least 50 days. However, all BAL cartridges completely lost their ammonia eliminating ability when stored at 4 °C. We also studied the effect of cell density on the maintenance of BAL liver function in a highly differentiated and healthy state. As expected, BALs containing a larger number of hepatocytes demonstrated higher metabolic functions. When metabolic functions were compared per gram of hepatocytes, no large differences were observed between devices containing different densities of hepatocytes. Decreased cell density did not successfully prolong BAL function. The viability and function of isolated hepatocytes highly depend on the culture conditions, such as cell density, substrata, culture media, and additives to the culture media. Perfusion culture of BAL cartridges at 4°C gave a promosing result with respect to the maintenance of P450 activity. However, as indicated by the rapid loss of ammonia metabolic activity, many factors still remain to be optimized for preservation of BAL keeping high metabolic functions for a longer time.  相似文献   

4.
Focusing on drug metabolism in liver, we constructed and evaluated a drug-metabolizing bioartificial liver (BAL) support system. In a previous study, we constructed ammonia-metabolizing CHO and hepatoma-derived HepG2 cell lines by recombination of the glutamine synthetase (GS) gene. For further mimicking of liver metabolism, the human hepatoma-derived cell line HepG2 was transformed by the pBudCE-GS-CYP3A4 vector, which contains GS and drug-metabolizing CYP 3A4 genes. The constructed GS-3A4-HepG2 cell line showed 3A4 activity higher than that of human primary hepatocytes. The drug-metabolizing activity of BAL (BAL clearance) was evaluated using this cell line. The estimated clearance was higher than that of the human hepatocyte system.  相似文献   

5.
Acute liver failure (ALF) is characterized neuropathologically by cytotoxic brain edema and biochemically by increased brain ammonia and its detoxification product, glutamine. The osmotic actions of increased glutamine synthesis in astrocytes are considered to be causally related to brain edema and its complications (intracranial hypertension, brain herniation) in ALF. However studies using multinuclear (1)H- and (13)C-NMR spectroscopy demonstrate that neither brain glutamine concentrations per se nor brain glutamine synthesis rates correlate with encephalopathy grade or the presence of brain edema in ALF. An alternative mechanism is now proposed whereby the newly synthesized glutamine is trapped within the astrocyte as a consequence of down-regulation of its high affinity glutamine transporter SNAT5 in ALF. Restricted transfer out of the cell rather than increased synthesis within the cell could potentially explain the cell swelling/brain edema in ALF. Moreover, the restricted transfer of glutamine from the astrocyte to the adjacent glutamatergic nerve terminal (where glutamine serves as immediate precursor for the releasable/transmitter pool of glutamate) could result in decreased excitatory transmission and excessive neuroinhibition that is characteristic of encephalopathy in ALF. Paradoxically, in spite of renewed interest in arterial ammonia as a predictor of raised intracranial pressure and brain herniation in ALF, ammonia-lowering agents aimed at reduction of ammonia production in the gut have so far been shown to be of limited value in the prevention of these cerebral consequences. Mild hypothermia, shown to prevent brain edema and intracranial hypertension in both experimental and human ALF, does so independent of effects on brain glutamine synthesis; whether or not hypothermia restores expression levels of SNAT5 in ALF awaits further studies. While inhibitors of brain glutamine synthesis such as methionine sulfoximine, have been proposed for the prevention of brain edema in ALF, potential adverse effects have so far limited their applicability.  相似文献   

6.
A xenogeneic hollow fiber bioreactor utilizing collagen-entrapped dispersed hepatocytes has been developed as an extracorporeal bioartificial liver (BAL) for potential treatment of acute human fulminant hepatitis. Prolonged viability, enhanced liver-specific functions, and differentiated state have been observed in primary porcine hepatocytes cultivated as spheroids compared to dispersed hepatocytes plated on a monolayer. Entrapment of spheroids into the BAL can potentially improve performance over the existing device. Therefore, studies were conducted to evaluate the feasibility of utilizing spheroids as the functionally active component of our hybrid device. Confocal microscopy indicated high viability of spheroids entrapped into cylindrical collagen gel. Entrapment of spheroids alone into collagen gel showed reduced ability to contract collagen gel. By mixing spheroids with dispersed cells, the extent of collagen gel contraction was increased. Hepatocyte spheroids collagen-entrapped into BAL devices were maintained for over 9 days. Assessment of albumin synthesis and ureagenesis within a spheroid-entrapment BAL indicated higher or at least as high activity on a per-cell basis compared to a dispersed hepatocyte-entrapment BAL device. Clearance of 4-methylumbelliferone to its glucuronide was detected throughout the culture period as a marker of phase II conjugation activity. A spheroid-entrapment bioartificial liver warrants further studies for potential human therapy. (c) 1996 John Wiley & Sons, Inc.  相似文献   

7.
Bioartificial livers (BALs) are bioreactors containing liver cells that provide extracorporeal liver support to liver‐failure patients. Theoretically, the plasma perfusion flow rate through a BAL is an important determinant of its functionality. Low flow rates can limit functionality due to limited substrate availability, and high flow rates can induce cell damage. This hypothesis was tested by perfusing the AMC‐BAL loaded with the liver cell line HepaRG at four different medium flow rates (0.3, 1.5, 5, and 10 mL/min). Hepatic functions ammonia elimination, urea production, lactate consumption, and 6β‐hydroxylation of testosterone showed 2–20‐fold higher rates at 5 mL/min compared to 0.3 mL/min, while cell damage remained stable. However, at 10 mL/min cell damage was twofold higher, and maximal hepatic functionality was not changed, except for an increase in lactate elimination. On the other hand, only a low flow rate of 0.3 mL/min allowed for an accurate measurement of the ammonia and lactate mass balance across the bioreactor, which is useful for monitoring the BAL's condition during treatment. These results show that (1) the functionality of a BAL highly depends on the perfusion rate; (2) there is a universal optimal flow rate based on various function and cell damage parameters (5 mL/min for HepaRG‐BAL); and (3) in the current set‐up the mass balance of substrate, metabolite, or cell damage markers between in‐and out‐flow of the bioreactor can only be determined at a suboptimal, low, perfusion rate (0.3 mL/min for HepaRG‐BAL). Biotechnol. Bioeng. 2012; 109: 3182–3188. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Ammonia and lactate are the major byproducts from mammalian cells grown in medium containing glutamine and glucose. Both can be toxic to cells, and may limit the productivity of commercial bioreactors. The transient and steady-state responses of hybridoma growth and metabolism to lactate and ammonia pulse and step changes in continuous suspension culture have been examined. No inhibition was observed at 40 mM lactate. Cell growth was inhibited by 5 mM ammonia, but the cells were able to adapt to ammonia concentrations as high as 8.2 mM. Ammonia production decreased and alanine production increased in response to higher ammonia concentrations. Increased ammonia concentrations also inhibited glutamine and oxygen consumption. The specific oxygen consumption rate decreased by an order of magnitude after an ammonia pulse to 18 mM. Under these conditions, over 90% of the estimated ATP production was due to glycolysis and a large fraction of glutamine was converted to lactate.  相似文献   

9.
重组CHO细胞培养过程中氨对细胞代谢的影响   总被引:4,自引:2,他引:4  
研究了重组CHO细胞批培养过程中,氨浓度对细胞的葡萄糖、谷氨酰胺及其它氨基酸代谢的影响。表明,细胞对葡萄糖和谷氨酰胺的得率系数随着氨浓度的增加而降低,起始氨浓度为566mmol/L的批培养过程与起始氨浓度为021mmol/L的批培养过程相比,细胞对葡萄糖和谷氨酰胺的得率系数分别下降了78%和74%,细胞对其它氨基酸的得率系数也分别下降了50%~70%。氨浓度的增加明显地改变了细胞的代谢途径,葡萄糖代谢更倾向于厌氧的乳酸生成。在谷氨酰胺的代谢过程中,谷氨酸经谷氨酸脱氢酶进一步生成α酮戊二酸的过程受到了氨的抑制,而氨对谷氨酸经谷氨酸转氨酶反应生成α酮戊二酸的过程有促进作用,但总体上谷氨酸进一步脱氨生成α酮戊二酸的反应受到了氨的限制。  相似文献   

10.
Ammonia is a neurotoxin that is implicated in the pathogenesis of hepatic encephalopathy due to acute and chronic liver failure. However, its relation to neurological damage and brain edema is poorly understood. During the last decades, it has been the prevailing hypothesis that an osmotic disturbance induced by the astrocytic accumulation of glutamine leads to brain edema. However, various findings are at variance with this hypothesis. The present review will discuss: (a) correlation of ammonia with encephalopathy and brain edema in HE; (b) glutamine synthesis and astrocyte swelling; (c) glutamine synthesis and the glutamine-cycle: relation to brain energy metabolism; (d) glutamine synthesis and the glutamate-glutamine cycle and its relation to anaplerotic activity; (e) evidence favouring the "glutamine hypothesis"; (f) evidence contradicting the "glutamine hypothesis"; (g) glutamine synthesis and osmoregulation; (h) glutamine synthesis in chronic liver failure; (i) impaired brain energy metabolism in acute liver failure (ALF) and its relation to astrocytic glutamine synthesis. Taken together, the precise role of glutamine in the development of brain edema in ALF remains unclear. Astrocytic changes due to glutamine accumulation may lead secondarily to effects on brain energy metabolism. However, the relation between impaired energy metabolism and glutamine accumulation has not been well established. It is noteworthy that no single biochemical factor appears to be responsible for the many symptoms of HE. For example, brain glutamine accumulation and low-grade brain edema occur in chronic liver failure (CLF) suggesting common mechanisms are responsible for the neurological dysfunction in CLF and ALF. Recent NMR spectroscopic studies have provided considerably new information in this area. Future NMR studies using the stable isotope 13C may be useful in the study of the dynamics of brain metabolism in patients with ALF so as to better elucidate the precise role of glutamine accumulation and of glutamine-independent components to brain edema in ALF.  相似文献   

11.
Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver   总被引:3,自引:0,他引:3  
Glutamate is simultaneously taken up and released by perfused rat liver, as shown by 14CO2 production from [1-14C]glutamate in the presence of a net glutamate release by the liver, turning to a net glutamate uptake at portal glutamate concentrations above 0.3 mM. 14CO2 production from portal [1-14C]glutamate is decreased by about 60% in the presence of ammonium ions. This effect is not observed during inhibition of glutamine synthetase by methionine sulfoximine. 14CO2 production from [1-14C]glutamate is not influenced by glutamine. Also, when glutamate accumulates intracellularly during the metabolism of glutamine (added at high concentrations, 5 mM), 14CO2 production from [1-14C]glutamate is not affected. If labeled glutamate is generated intracellularly from added [U-14C]proline, stimulation of glutamine synthesis by ammonium ions did not affect 14CO2 production from [U-14C]proline. After induction of a perivenous liver cell necrosis by CCL4, i.e. conditions associated with an almost complete loss of perivenous glutamine synthesis but no effect on periportal urea synthesis, 14CO2 production from [1-14C]glutamate is decreased by about 70%. The results are explained by hepatocyte heterogeneity in glutamate metabolism and indicate a predominant uptake of glutamate (that reaches the liver by the vena portae) by the small perivenous population of glutamine-synthesizing hepatocytes, whereas glutamate production from glutamine or proline is predominantly periportal. In view of the size of the glutamine synthetase-containing hepatocyte pool [Gebhardt, R. and Mecke, D. (1983) EMBO J. 2, 567-570], glutamate transport capacity of these hepatocytes would be about 20-fold higher as compared to other hepatocytes.  相似文献   

12.
13.
Ammonia metabolism of ratprimary hepatocytes and a human hepatocyte cell line,Huh 7, at different concentrations of glutamine,glucose and ammonia was examined. During theincubation of the primary hepatocyte cells, glutamineand ammonia concentrations decreased, that of ureaincreased, and that of glucose remained the same. Inthe case of Huh 7 cells, glucose was consumed rapidly,the concentration of ammonia increased and that of urearemained the same. The major energy sources amongmedium components were glutamine for the primary cellsand glucose for Huh 7 cells, although the primaryhepatocytes may utilize intracellular glycogen asenergy source. As the glutamine concentration in theincubation medium increased, the specific rates of notonly glutamine consumption, but also ammonia productionby the primary cells and Huh 7 cells increased. Besides, specific urea production rate by the primarycells increased then. Increase of glucoseconcentration had no effect on glutamine and ammoniametabolism by both cells, although it increased glucoseconsumption by Huh 7 cells. The incubation of theprimary cells with higher ammonia concentrationincreased all specific rates of glutamine consumption,ammonia consumption and urea production. An increasein the ammonia concentration to 5 mM changed theammonia metabolism from production to consumption andincreased the specific glucose consumption rate. Consequently, increases in the glutamine and ammoniaconcentrations were revealed to have negative andpositive effects, respectively, on decreasing ammoniaconcentration by both of rat primary hepatocytes andHuh 7 cells.  相似文献   

14.
The urea cycle in the liver of adjuvant-induced arthritic rats was investigated using the isolated perfused liver. Urea production in livers from arthritic rats was decreased during substrate-free perfusion and also in the presence of the following substrates: alanine, alanine + ornithine, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine but increased when arginine and citrulline + aspartate were the substrates. No differences were found with ammonia + aspartate, ammonia + aspartate + glutamate, aspartate, aspartate + glutamate and citrulline. Ammonia consumption was smaller in the arthritic condition when the substance was infused together with lactate or pyruvate but higher when the substance was simultaneously infused with aspartate or aspartate + glutamate. Glucose production tended to correlate with the smaller or higher rates of urea synthesis. Blood urea was higher in arthritic rats (+25.6%), but blood ammonia was lower (–32.2%). Critical for the synthesis of urea from various substrates in arthritic rats seems to be the availability of aspartate, whose production in the liver is probably limited by both the reduced gluconeogenesis and aminotransferase activities. This is indicated by urea synthesis which was never inferior in the arthritic condition when aspartate was exogenously supplied, being even higher when both aspartate and citrulline were simultaneously present. Possibly, the liver of arthritic rats has a different substrate supply of nitrogenous compounds. This could be in the form of different concentrations of aspartate or other aminoacids such as citrulline or arginine (from the kidneys) which allow higher rates of hepatic ureogenesis.  相似文献   

15.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

16.
 The liver plays a central role in nitrogen metabolism. Nitrogen enters the liver as free ammonia and as amino acids of which glutamine and alanine are the most important precursors. Detoxification of ammonia to urea involves deamination and transamination. By applying quantitative in situ hybridization, we found that mRNA levels of the enzymes involved are mainly expressed in periportal zones of liver lobules. Free ammonia, that is not converted periportally, is efficiently detoxified in the small rim of hepatocytes around the central veins by glutamine synthetase preventing it from entering the systemic circulation. Detoxification of ammonia by glutamine synthetase may be limited due to a shortage of glutamate when the nitrogen load is high. Adaptations in metabolism that prevent release of toxic ammonia from the liver were studied in rats that were fed diets with different amounts of protein, thereby varying the nitrogen load of the liver. We observed that mRNA levels of periportal deaminating and transaminating enzymes increased with the protein content in the diet. Similarly, mRNA levels of pericentral glutamate dehydrogenase and ornithine aminotransferase, the main producers of glutamate in this zone, and pericentral glutamine synthetase all increased with increasing protein levels in the diet. On the basis of these changes in mRNA levels, we conclude that: (a) glutamate is produced pericentrally in sufficient amounts to allow ammonia detoxification by glutamine synthetase and (b) in addition to the catalytic role of ornithine in the periportally localized ornithine cycle, pericentral ornithine degradation provides glutamate for ammonia detoxification. Accepted: 16 March 1999  相似文献   

17.
Ammonia overloading was investigated during glucose and fructose metabolism in isolated hepatocytes under a variety of metabolic conditions. In all assay conditions, the glycolytic flux and oxygen uptake was not modified by 10 mM ammonia. In hepatocytes isolated from rats fed as libitum, the presence of ammonia caused a decrease in the production of lactate (pyruvate); this effect was not observed in anaerobic incubations, in hepatocytes isolated from starved animals, or in fetal hepatocytes. In spite of an overproduction of urea, ammonia detoxification also takes place by the synthesis of alanine, glutamate and aspartate. Addition of 1 mM aminooxyacetate, an inhibitor of aminotransferases, to the incubation medium prevents the formation of these amino acids, and also prevents the decrease of lactate in hepatocytes isolated from fed animals.  相似文献   

18.
Parenchymal cells from normal adult rat liver, prepared with high yield (30 × 106 cells/g liver) and viability index (>96%) by a non-perfusion method, were maintained in non-proliferating monolayer culture. Several metabolic functions were investigated for 7 days to evaluate functional integrity of the cultured hepatocytes. Leucine was linearly incorporated into protein for 4.5 h at each day of cultivation and the incorporation rate increased up to 2-fold after 3 days. Urea production was maintained at a rate of 0.5 μmoles/mg protein × h for at least 7 days, and its amount was enhanced 2-fold within 24 h by the addition of 3 mM NH4Cl. Glucose was formed during the first days by the hepatocytes and was then taken up with increasing amount from the surrounding medium. Lactate consumption, on the other hand, was replaced by lactate production after one day of cultivation.Variations in enzyme levels of lactate dehydrogenase, arginase, glutamine synthetase and glucose-6-phosphatase were also studied during the whole culture period. Cell leakage, which was detected only in the case of lactate dehydrogenase (LDH), occurred through the 4th day along with a concomitant loss of intracellular LDH activity. After 4 days, however, the enzyme activity returned to the initial level. Arginase was maintained throughout the cultivation period and was stimulated 2- to 3-fold within 24 h by NH4Cl. Glutamine synthetase declined within the first 4 h of cultivation and then remained in the hepatocytes with a transitory rise after 2 days. Its activity was also found to be inversely related to the concentration of glutamine in the culture medium up to 4 mM. Glucose-6-phosphatase gradually decreased during the cultivation period, the enzyme activity, however, was stimulated by glucagon within 24 h.  相似文献   

19.
A Chinese hamster ovary (CHO) cell line, producing recombinant secreted human placental alkaline phosphatase (SEAP) was investigated under three different culture conditions (suspension cells, cells attached to Cytodex 3 and Cytopore 1 microcarriers) in a biphasic culture mode using a temperature shift to mild hypothermic conditions (33 °C) in a fed-batch bioreactor. The cell viability in both the suspension and the Cytodex 3 cultures was maintained for significantly longer periods under hypothermic conditions than in the single-temperature cultures, leading to higher integrated viable cell densities. For all culture conditions, the specific productivity of SEAP increased after the temperature reduction; the specific productivities of the microcarrier cultures increased approximately threefold while the specific productivity of the suspension culture increased nearly eightfold. The glucose and glutamine consumption rates and lactate and ammonia production rates were significantly lowered after the temperature reduction, as were the yields of lactate from glucose. However, the yield of ammonia from glutamine increased in response to the temperature shift.  相似文献   

20.
The urea cycle was evaluated in perfused livers isolated from cachectic tumor-bearing rats (Walker-256 tumor). Urea production in livers of tumor-bearing rats was decreased in the presence of the following substrates: alanine, alanine + ornithine, alanine + aspartate, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine. Urea production from arginine was higher in livers of tumor-bearing rats. No difference was found with aspartate, aspartate + ammonia, citrulline, citrulline + aspartate and glutamine + aspartate. Ammonia consumption was smaller in livers from cachectic rats when the substance was infused together with lactate and pyruvate. Glucose production was smaller in the cachectic condition only when alanine was the gluconeogenic substrate. Blood urea was higher in tumor-bearing rats, suggesting higher rates of urea production. The availability of aspartate seems to be critical for urea synthesis in the liver of tumor-bearing rats, which is possibly unable to produce this amino acid in sufficient amounts from endogenous sources. The liver of tumor-bearing rats may have a different exogenous substrate supply of nitrogenous compounds. Arginine could be one of these compounds in addition to aspartate which seems to be essential for an efficient ureogenesis in tumor-bearing rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号