首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Post-kala-azar dermal leishmaniasis (PKDL) is a complication of visceral leishmaniasis (VL) that most frequently occurs after an episode of VL caused by Leishmania donovani. In this case report, we present a 21-year-old male patient with persistent skin lesions and recurrent visceral leishmaniasis (VL) due to Leishmania infantum. The patient did not respond to multiple lines of anti-leishmanial treatment (including Liposomal amphotericin B and miltefosine) and later died from cerebral lesions presumed to be secondary to persistent VL.  相似文献   

2.
MTS or {3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl}-2H-tetrazolium, inner salt) is converted into soluble formazan by mitochondrial dehydrogenase of viable cells, thus serving as an indicator of cell viability. Accordingly, a MTS-based assay was developed to evaluate anti-leishmanial activity in Leishmania promastigotes from strains responsible for visceral, cutaneous or mucocutaneous leishmaniasis. The assay was initially optimized for the appropriate wavelength (490 nm), culture medium (M-199), incubation time (3 h) and temperature (37 degrees C). Increasing absorbance with increasing cell density confirmed linearity of the assay that was maintained up to 2.5 x 10(6) cells/200 microl. The growth kinetics of six L. donovani strains and six non-L. donovani strains consistently indicated higher absorbances in the L. donovani strains highlighting the importance of strain-specific customization of the MTS assay. The IC(50) values (i.e., the concentration at which 50% of growth was inhibited) of amphotericin B, miltefosine and pentamidine isethionate obtained by the MTS assay corroborated with previously published data. Taken together, the MTS assay thus permits a simple, reproducible and reliable semi-automated method for evaluating cell viability, effective for drug-screening and growth kinetic studies.  相似文献   

3.
Leishmania donovani, a protozoan parasite, causes a strong immunosuppression in a susceptible host and inflicts the fatal disease visceral leishmaniasis. Relatively high toxicity, low therapeutic index, and failure in reinstating host-protective anti-leishmanial immune responses have made anti-leishmanial drugs patient non-compliant and an immuno-modulatory treatment a necessity. Therefore, we have tested the anti-leishmanial efficacy of a combination of a novel immunomodulator, Mycobacterium indicus pranii (Mw), and an anti-leishmanial drug, Amphotericin B (AmpB). We observe that Mw alone or with a suboptimal dose of AmpB offers significant protection against L. donovani infection by activating the macrophages. Our experiments examining the anti-leishmanial activity of Mw alone or with AmpB also indicate a p38MAPK and ERK-1/2 regulated pro-inflammatory responses. The Mw-AmpB combination induced nitric oxide production, restored Th1 response, and significantly reduced parasite burden in wild type macrophages but not in IL-12-deficient macrophages indicating a pivotal role for IL-12 in the induction of host-protection by Mw and AmpB treatments. In addition, we observed that Mw alone or in combination with suboptimal dose of AmpB render protection against L. donovani infection in susceptible BALB/c mice. However, these treatments failed to render protection in IL-12-deficient mice in vivo which added further support that IL-12 played a central role in this chemo immunotherapeutic approach. Thus, we demonstrate a novel chemo-immunotherapeutic approach- Mw and AmpB crosstalk eliminating the parasite-induced immunosuppression and inducing collateral host-protective effects.  相似文献   

4.
BackgroundRecent studies have shown significant decline in the final cure rate after miltefosine treatment in visceral leishmaniasis. This study evaluates the efficacy of miltefosine in the treatment of post kala-azar dermal leishmaniasis (PKDL) patients recruited over a period of 5 years with 18 months of follow-up.MethodologyIn this study 86 confirmed cases of PKDL were treated with two different dosage regimens of miltefosine (Regimen I- 50mg twice daily for 90 days and Regimen II- 50 mg thrice for 60 days) and the clinical outcome assessed monthly. Cure/relapse was ascertained by clinical and histopathological examination, and measuring parasite burden by quantitative real-time PCR. In vitro susceptibility of parasites towards miltefosine was estimated at both promastigote and amastigote stages.ResultsSeventy three of eighty six patients completed the treatment and achieved clinical cure. Approximately 4% (3/73) patients relapsed by the end of 12 months follow-up, while a total of 15% (11/73) relapsed by the end of 18 months. Relapse rate was significantly higher in regimen II (31%) compared to regimen I (10.5%)(P<0.005). Parasite load at the pre-treatment stage was significantly higher (P<0.005) in cases that relapsed compared to the cases that remained cured. In vitro susceptibility towards miltefosine of parasites isolated after relapse was significantly lower (>2 fold) in comparison with the pre-treatment isolates (P<0.005).ConclusionRelapse rate in PKDL following miltefosine treatment has increased substantially, indicating the need of introducing alternate drugs/ combination therapy with miltefosine.  相似文献   

5.
Miltefosine was the first oral compound approved for visceral leishmaniasis chemotherapy, and its efficacy against Leishmania donovani has been well documented. Leishmania amazonensis is the second most prevalent species causing cutaneous leishmaniasis and the main etiological agent of diffuse cutaneous leishmaniasis in Brazil. Driven by the necessity of finding alternative therapeutic strategies for a chronic diffuse cutaneous leishmaniasis patient, we evaluated the susceptibility to miltefosine of the Leishmania amazonensis line isolated from this patient, who had not been previously treated with miltefosine. In vitro tests against promastigotes and intracellular amastigotes showed that this parasite isolate was less susceptible to miltefosine than L. amazonensis type strains. Due to this difference in susceptibility, we evaluated whether genes previously associated with miltefosine resistance were involved. No mutations were found in the miltefosine transporter gene or in the Ros3 or pyridoxal kinase genes. These analyses were conducted in parallel with the characterization of L. amazonensis mutant lines selected for miltefosine resistance using a conventional protocol to select resistance in vitro, i.e., exposure of promastigotes to increasing drug concentrations. In these mutant lines, a single nucleotide mutation G852E was found in the miltefosine transporter gene. In vivo studies were also performed to evaluate the correlation between in vitro susceptibility and in vivo efficacy. Miltefosine was effective in the treatment of BALB/c mice infected with the L. amazonensis type strain and with the diffuse cutaneous leishmaniasis isolate. On the other hand, animals infected with the resistant line bearing the mutated miltefosine transporter gene were completely refractory to miltefosine chemotherapy. These data highlight the difficulties in establishing correlations between in vitro susceptibility determinations and response to chemotherapy in vivo. This study contributed to establish that the miltefosine transporter is essential for drug activity in L. amazonensis and a potential molecular marker of miltefosine unresponsiveness in leishmaniasis patients.  相似文献   

6.
The control of leishmaniasis in absence of vaccine solely depends on the choice of chemotherapy. The major hurdle in successful leishmanial chemotherapy is emergence of drug resistance. Miltefosine, the first orally administrable anti-leishmanial drug, has shown the potential against drug-resistant strains of Leishmania. However, there are discrepancies regarding the involvement of P-glycoprotein (Pgp) and sensitivity of miltefosine in multiple drug-resistant (MDR) cell lines that overexpress Pgp in Leishmania. To address this, the effect of miltefosine in arsenite-resistant Leishmania donovani (Ld-As20) promastigotes displaying an MDR phenotype and overexpressing Pgp-like protein was investigated in the current study. Results indicate that Ld-As20 is sensitive to miltefosine. Miltefosine induces process of programmed cell death in Ld-As20 in a time-dependent manner as determined by cell shrinkage, externalization of phosphatidylserine and DNA fragmentation. Miltefosine treatment leads to loss of mitochondrial membrane potential and the release of cytochrome C with consequent activation of cellular proteases. Activation of cellular proteases resulted in activation of DNase that damaged kinetoplast DNA and induced dyskinetoplasty. These data indicate that miltefosine causes apoptosis-like death in arsenite-resistant L. donovani.  相似文献   

7.
BackgroundThere is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL.Methodology / Principal findingsBALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates.Conclusion / SignificanceUsing a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL.  相似文献   

8.
This study investigated the role of liposomes in changing the pharmacological efficacy of anti-leishmanial drugs in hamsters infected with visceral leishmaniasis. Enhanced anti-leishmanial activity could be accounted for only by liposome-encapsulated drugs. “Empty” liposomes (lacking anti-leishmanial drug) gave no therapeutic benefit by themselves, nor did they enhance the effectiveness of concurrently administered drugs. In the absence of additional drugs, empty liposomes actually resulted in a higher mortality due to endstage leishmaniasis. Mortality associated with chronic leishmaniasis, including that induced by empty liposomes, was reduced approximately 50% by orally administered unencapsulated tetracycline. Liposome-encapsulated tetracycline, given i.c., had no anti-leishmanial activity, thus indicating that tetracycline did not have inherent anti-leishmanial properties, and was beneficial because of its anti-bacterial effects. Liposomes containing an antimonial drug were effective when given i.c., i.p., or i.m., but not when given s.c. or p.o. Liposome-encapsulated antimonial drug had prophylactic activity and was effective when administered 8 days prior, but not 17 days prior, to infection. Unencapsulated antimonial drug had no prophylactic effect. In addition to antimonials, another class of compounds, 8-aminoquinolines, had marked anti-leishmanial activity in liposomes. One of these, WR 6026, was 700 to 1800 times more effective than an antimonial drug alone.  相似文献   

9.
In Old World Leishmania infections, Leishmania donovani is responsible for fatal visceral leishmaniasis, and L. major is responsible for non-fatal cutaneous leishmaniasis in humans. The genetic differences between these species which govern the pathology or site of infection are not known. We have therefore carried out detailed analysis of the A2 loci in L. major and L. donovani because A2 is expressed in L. donovani but not L. major, and A2 is required for survival in visceral organs by L. donovani. We demonstrate that although L. major contains A2 gene regulatory sequences, the multiple repeats that exist in L. donovani A2 protein coding regions are absent in L. major, and the remaining corresponding A2 sequences appear to represent non-expressed pseudogenes. It was possible to restore amastigote-specific A2 expression to L. major, confirming that A2 regulatory sequences remain functional in L. major. Although L. major is a cutaneous parasite in rodents and humans, restoring A2 expression to L. major inhibited its ability to establish a cutaneous infection in susceptible BALB/c or resistant C57BL6 mice, a phenotype typical of L. donovani. There was no detectable cellular immune response against L. major after cutaneous infection with A2-expressing L. major, suggesting that the lack of growth was not attributable to acquired host resistance but to an A2-mediated suppression of parasite survival in skin macrophages. These observations argue that the lack of A2 expression in L. major contributed to its divergence from L. donovani with respect to the pathology of infection.  相似文献   

10.
Sitamaquine is a 8-aminoquinoline in development for the treatment of visceral leishmaniasis by oral route, no activity being observed on the experimental cutaneous leishmaniasis experimental models. Recent data explain how sitamaquine accumulate in Leishmania parasites, however its molecular targets remain to be identified. An advantage of sitamaquine is its short elimination half-life, preventing a rapid resistance emergence. The antileishmanial action of its metabolites is not known. The selection of a sitamaquine-resistant clone of L. donovani in laboratory and the phase II clinical trials pointing out some adverse effects such as methemoglobinemia and nephrotoxicity are considered for a further development decision.  相似文献   

11.
BackgroundRecent circumstantial evidence suggests increasing number of Iranian patients with cutaneous leishmaniasis (CL) who are unresponsive to meglumine antimoniate (MA), the first line of treatment in Iran. Oral meltifosine was previously reported to be effective in visceral leishmaniasis as well CL. The current study is designed to determine efficacy and safety of oral miltefosine for the treatment of anthroponotic cutaneous leishmaniasis (ACL) cases who were refractory to MA in Iran.Methodology/Principal findingsMiltefosine was orally administered for 27 patients with MA resistant ACL with approved L.tropica infection, at a dosage of ∼2.5 mg/kg daily for 28 days. Patients were evaluated on day 14 and 28, as well as 3, 6 and 12 month post treatment follow up sessions. Laboratory data were performed and repeated at each visit. Data were analyzed using SPSS version 17. Twenty-seven patients including 16 men (59.25%) and 11 women (40.74%) with mean age of 28.56 ± 4.8 (range 3–54 years old) were enrolled. Total number of lesions were 42 (1–4 in each patient). Most of lesions were on face (76.19%). Mean lesions’ induration size was 2.38 ± 0.73 cm at the base-line which significantly decreased to1.31 ± 0.58 cm and 0.61 ±0.49 cm after 14 and 28 days of therapy, respectively (p value <0.05). At 12-months follow-up post treatment, 22 patients had definite/partial cure (81.48%) including 17 definitely cured patients, corresponding to a cure rate of 68% on per protocol analysis, and 62.96% according to intention to treat analysis. Recurrence of lesion was only occurred in one patient (3.70%). Nausea was the most subjective complication during the therapy (33.33%).ConclusionOral miltefosine could be an effective alternative for the treatment of MA-resistant ACL.  相似文献   

12.
Alkyl-lysophospholipids (ALPs), developed initially to be antitumor agents, have proved highly effective in the treatment of visceral leishmaniasis, a disease caused by the species making up the protozoan complex Leishmania donovani. Although their effectiveness is known, the mode of action against this parasite is not completely understood. In the present work, we have studied the effect of 3 derivatives, edelfosine, miltefosine, and ilmofosine. Using nuclear magnetic resonance spectroscopy ('H-NMR), we have examined the excreted catabolites from glucose metabolism in the promastigote forms treated with these compounds. The ALPs at concentrations of 19 and 38 microM inhibit the excretion of acetate, succinate, and pyruvate. The effect of edelfosine, miltefosine, and ilmofosine on the activity of the enzymes hexokinase, glycerolkinase 3-PD, phosphoglucose isomerase, superoxide dismutase, and phospholipase C were also examined. Glycerolkinase 3-PD and phosphoglucose isomerase are generally insensitive to the compounds, whereas hexokinase and superoxide dismutase are inhibited by miltefosine and ilmofosine. The ALPs exhibited an activated effect against the phospholipase C activity. Alkyl-lysophospholipids were shown to have a significant effect on several enzymes in important biochemical pathways indispensable for the survival of L. donovani promasigotes.  相似文献   

13.
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis (VL) and is responsible for significant mortality and morbidity. Increasing resistance towards antimonial drugs poses a great challenge in chemotherapy of VL. Paromomycin is an aminoglycosidic antibiotic and is one of the drugs currently being used in the chemotherapy of cutaneous and visceral leishmaniasis. To understand the mode of action of this antibiotic at the molecular level, we have investigated the global proteome differences between the wild type AG83 strain and a paromomycin resistant (PRr) strain of L. donovani. Stable isotope labeling of amino acids in cell culture (SILAC) followed by quantitative mass spectrometry of the wild type AG83 strain and the paromomycin resistant (PRr) strain identified a total of 226 proteins at ≥ 95% confidence. Data analysis revealed upregulation of 29 proteins and down-regulation of 21 proteins in the PRr strain. Comparative proteomic analysis of the wild type and the paromomycin resistant strains showed upregulation of the ribosomal proteins in the resistant strain indicating role in translation. Elevated levels of glycolytic enzymes and stress proteins were also observed in the PRr strain. Most importantly, we observed upregulation of proteins that may have a role in intracellular survival and vesicular trafficking in the PRr strain. Furthermore, ultra-structural analysis by electron microscopy demonstrated increased number of vesicular vacuoles in PRr strain when compared to the wild-type strain. Drug affinity pull-down assay followed by mass spectrometery identified proteins in L. donovani wild type strain that were specifically and covalently bound to paromomycin. These results provide the first comprehensive insight into the mode of action and underlying mechanism of resistance to paromomycin in Leishmania donovani.  相似文献   

14.
Dogs are the domestic reservoir for Leishmania infantum (syn.: L. chagasi), the parasite causing zoonotic visceral leishmaniasis (ZVL) in both the Old and New Worlds. In foci of canine leishmaniasis (CanL), symptomatic disease occurs in less than 50% of infected dogs, and is characterized by chronic evolution of viscero-cutaneous signs. Among strategies recommended to control ZVL, detection and drug treatment of infected dogs are usually employed in the endemic countries of southern Europe. However, the conventional antileishmanial drugs successfully used in human therapy, such as pentavalent antimonials, amphotericin B, pentamidine or miltefosine, have low efficacy in the treatment of CanL. In dogs, these drugs induce only temporary remission of clinical signs, do not prevent occurrence of relapses, and often cause severe side effects. Leishmaniotic dogs may be classified into 4 groups: 1) Asymptomatic resistant dogs ("contacted dogs"), 2) Asymptomatic dogs (preclinical), 3) Dogs with minimal signs of leishmaniasis (oligosymptomatic dogs? Chronic form of leishmaniasis?), 4) Dogs suffering from different forms of clinical leishmaniasis (symptomatic dogs). The dog's immunological status and the associated clinical signs may influence the efficacy of antileishmanial drugs. Subjects belonging to groups 2, 3 and 4 should be always treated, in order to reduce their parasite load. Parameters that must be considered before starting the antileishmanial treatment are hemogram, renal and hepatic functions, electrophoretic protein pattern, antileishmania antibody titres, and bone marrow and lymph node parasite load. The most common antileishmanial drugs currently used in Italy to treat CanL are pentavalent antimonials (meglumine antimoniate) and allopurinol, alone or in combination. Other used drugs are aminosidine (syn.: paromomycin), pentamidine, metronidazole and spyramicin. Each drug regimen has different duration, from a few weeks (aminosidine), to a few months (meglumine antimoniate) or several months (allopurinol). One of the most recent drug used in human VL is liposomal amphotericin B (AmBisome--L-AMB), a powerful antileishmanial drug in both experimental murine models and in VL patients. In Italy, L-AMB is now considered the drug of choice for the treatment of human cases. However, in HIV co-infected patients high doses of L-AMB are ineffective in obtaining a radical cure. In dogs, L-AMB treatment rapidly leads to clinical recovery but is uneffective to eliminate the parasites. Drugs containing amphotericin B should not be used in veterinary practice in order to avoid selection of parasites resistant to the drug, as it already occurred for the pentavalent antimonials. Currently, there is not a standard protocol for CanL treatment in Italy, as there is an extreme variability of proposed dosages. Clinical studies on immunotherapeutics and new antileishmanial drugs, such as miltefosine and its derivates, are in progress.  相似文献   

15.
As a result of a long passage of L. donovani isolate on golden hamsters (21 passages were observed), in transplanting the agent from animals with a distinct clinical picture there was formed a highly virulent strain "G" of L. donovani for this species of animals. The weight arrest and then body mass losses were the most early signs of the disease. Parasites were regularly accumulated in spleen and liver and to a less extent in bone marrow. The main manifestations of visceral leishmaniasis in hamsters are cachexia, lienal syndrome, polyglandular deficiency on the background of hypoplasia of lymphoid tissue and defects of the system of monocytic phagocytes. Such symptom-complex can be a result of neuroendocrine deficiency during visceral leishmaniasis. Pathohistological picture of experimental visceral leishmaniasis is similar to that of man, so L. donovani infection in hamsters can serve as a model for studies of different medical and biological aspects of leishmaniasis.  相似文献   

16.

Background

The only oral drug available for the treatment of leishmaniasis is miltefosine, described and approved for visceral leishmaniasis in India. Miltefosine is under evaluation for the treatment of cutaneous leishmaniasis in the Americas although its efficacy for the treatment of human visceral leishmaniasis caused by Leishmania infantum chagasi has not been described. Drug efficacy for visceral leishmaniasis is ideally tested in hamsters, an experimental model that mimics human disease. Luciferase has been validated as a quantitative tool for the determination of parasite burden in experimental leishmaniasis. However, there are no reports of luciferase detection in the model of progressive visceral leishmaniasis in hamsters. Therefore, the aims of this study were to generate recombinant Leishmania infantum chagasi expressing the luciferase gene (Lc-LUC), characterize the biological properties of this transgenic line as compared with the wild-type parasites and evaluate miltefosine effectiveness in Lc-LUC infected hamsters.

Methodology/Principal Findings

A transgenic line containing a luciferase encoding gene integrated into the ribosomal DNA locus was obtained and shown to produce bioluminescence which correlated with the number of parasites. Lc-LUC growth curves and susceptibility to pentavalent antimony and miltefosine in vitro were indistinguishable from the wild-type parasites. The effectiveness of pentavalent antimony was evaluated in Lc-LUC infected hamsters through bioimaging and determination of Leishman Donovan Units. Both methods showed concordant results. Miltefosine was effective in the treatment of Lc-LUC-infected hamsters, as demonstrated by the reduction in parasite burden in a dose-dependent manner and by prolongation of animal survival.

Conclusions/Significance

Luciferase expressing parasites are a reliable alternative for parasite burden quantification in hamsters with advantages such as the possibility of estimating parasite load before drug treatment and therefore allowing distribution of animals in groups with equivalent mean parasite burden. Miltefosine was effective in vivo in an L. infantum chagasi experimental model of infection.  相似文献   

17.

Objective

Based on studies in India (as there was no studies from outside India) amphotericin B deoxycholate has been considered as a backup drug for treatment of visceral leishmaniasis. However, treatment response and adverse effect to anti-leishmanial drugs may vary across different populations and in Bangladesh the effect to amphotericin B deoxycholate for treatment of visceral leishmaniasis is still unknown. Therefore, there is a need to explore cure rate and adverse effects to amphotericin B deoxycholate to justify its use on visceral leishmaniasis patients in Bangladesh.

Result

Here we report 34 visceral leishmaniasis patients who received treatment with amphotericin B deoxycholate in the Surya Kanta Kala-azar Research Centre from December 2011 to June 2015. The dose of the treatment was 1 mg/kg body weight for 15 days followed up until 12 months after treatment. Response to amphotericin B deoxycholate treatment was excellent as all 34 patients achieved a final cure. Hypokalaemia (47%), shivering (47%), vomiting (35%) and acidity (15%) were most common adverse events. However, we did not observe any serious adverse events. Amphotericin B deoxycholate for relapse visceral leishmaniasis was found to be highly effective and safe. Our study justified to include amphotericin B deoxycholate as a second line drug for visceral leishmaniasis in Bangladesh.
  相似文献   

18.
Neopterin, a product of gamma-interferon-activated macrophages, was measured in sera from 28 patients (12 patients with cutaneous leishmaniasis and 16 patients with visceral leishmaniasis) to determine the utility as a marker of disease activity and therapeutic efficacy. Patients originated from Kenya (n=5) and from the Academic Medical Center, Amsterdam, The Netherlands (n=23). In seven patients follow-up sera after treatment were available. Two patients at the time of diagnosis of visceral leishmaniasis were co-infected with HIV. The 12 patients with cutaneous leishmaniasis had serum neopterin levels below the upper limit of the normal range. All 16 patients with visceral leishmaniasis had elevated levels of serum neopterin before treatment. In six out of seven patients with visceral leishmaniasis followed during treatment neopterin levels decreased to values below the upper limit of the normal range (10 nmol l(-1)). Sequential measurements of serum neopterin levels may be useful for monitoring therapeutic efficacy in patients with visceral leishmaniasis.  相似文献   

19.
Although cases of leishmaniasis co-infection have been described in acquired immunodeficiency syndrome patients as well as those who have undergone organ transplants, to our knowledge, the present report is the first documented case of simultaneous cutaneous, visceral and ocular leishmaniasis due to Leishmania (Viannia) braziliensis in a transplant patient. The patient had been using immunosuppressive drugs since receiving a transplanted kidney. The first clinical signs of leishmaniasis included fever, thoracic pain, hepatosplenomegaly, leucopenia and anemia. The cutaneous disease was revealed by the presence of amastigotes in the skin biopsy. After three months, the patient presented fever with conjunctive hyperemia, intense ocular pain and low visual acuity. Parasites isolated from iliac crest, aqueous humor and vitreous body were examined using a range of molecular techniques. The same strain of L. (V.) braziliensis was responsible for the different clinical manifestations. The immunosuppressive drugs probably contributed to the dissemination of Leishmania.  相似文献   

20.
The in vitro leishmanicidal activity of miltefosine? (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号