首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

2.
We investigated the effects of methylxanthines on enzymatic activity of phosphoinositide 3-kinases (PI3Ks). We found that caffeine inhibits the in vitro lipid kinase of class I PI3Ks (IC(50) = 75 microm for p110 delta, 400 microm for p110 alpha and p110 beta, and 1 mm for p110 gamma), and theophylline has similar effects (IC(50) = 75 microm for p110 delta, 300 microm for p110 alpha, and 800 microm for p110 beta and p110 gamma) and also inhibits the alpha isoform of class II PI3K (PI3K-C2 alpha) (IC(50) approximately 400 microm). However, four other xanthine derivatives tested (3-isobutyl-1-methylxanthine, 3-propylxanthine, alloxazine, and PD116948 (8-cyclopentyl-1,3-dipropylxanthine)) were an order of magnitude less effective. Surprisingly the triazoloquinazoline CGS15943 (9-chloro-2-(2-furyl)(1,2,d)triazolo(1,5-c)quinazolin-5-amine) also selectively inhibits p110 delta (IC(50) < 10 microm). Caffeine and theophylline also inhibit the intrinsic protein kinase activity of the class IA PI3Ks and DNA-dependent protein kinase, although with a much lower potency than that for the lipid kinase (IC(50) approximately 10 mm for p110 alpha, 3 mm for p110 beta, and 10 mm for DNA-dependent protein kinase). In CHO-IR cells and rat soleus muscle, theophylline and caffeine block the ability of insulin to stimulate protein kinase B with IC(50) values similar to those for inhibition of PI3K activity, whereas insulin stimulation of ERK1 or ERK2 was not inhibited at concentrations up to 10 mm. Theophylline and caffeine also blocked insulin stimulation of glucose transport in CHO-IR cells. These results demonstrate that these methylxanthines are direct inhibitors of PI3K lipid kinase activity but are distinctly less effective against serine kinase activity and thus could be of potential use in dissecting these two distinct kinase activities. Theophylline, caffeine, and CGS15943 may be of particular use in dissecting the specific role of the p110 delta lipid kinase. Finally, we conclude that inhibition of PI3K (p110 delta in particular) is likely explain some of the physiological and pharmacological properties of caffeine and theophylline.  相似文献   

3.
Eight human isoforms of phosphoinositide 3-kinases (PI3Ks) exist, but their individual functions remain poorly understood. Here, we show that different human small cell lung carcinoma (SCLC) cell lines overexpress distinct subsets of class I(A) and II PI3Ks, which results in striking differences in the signalling cascades activated by stem cell factor (SCF). Over expression of class I(A) p85/p110alpha in SCLC cells increased SCF-stimulated protein kinase B (PKB) activation and cell growth, but did not affect extracellular signal-regulated kinase (Erk) or glycogen synthase kinase-3 (GSK-3). This effect was selective, since it was not observed in SCLC cell lines overexpressing p85/p110beta or p85/p110delta. The SCF receptor associated with both class I(A) p85 and class II PI3KC2beta, and both enzymes contributed to SCF-stimulated PKB activity. A dominant-negative PI3KC2beta blocked both PKB activation and SCLC cell growth in response to SCF. Together our data provide novel insights into the specificity and functional significance of PI3K signalling in human cancer.  相似文献   

4.
Genetic alterations in PI3K (phosphoinositide 3-kinase) signalling are common in cancer and include deletions in PTEN (phosphatase and tensin homologue deleted on chromosome 10), amplifications of PIK3CA and mutations in two distinct regions of the PIK3CA gene. This suggests drugs targeting PI3K, and p110α in particular, might be useful in treating cancers. Broad-spectrum inhibition of PI3K is effective in preventing growth factor signalling and tumour growth, but suitable inhibitors of p110α have not been available to study the effects of inhibiting this isoform alone. In the present study we characterize a novel small molecule, A66, showing the S-enantiomer to be a highly specific and selective p110α inhibitor. Using molecular modelling and biochemical studies, we explain the basis of this selectivity. Using a panel of isoform-selective inhibitors, we show that insulin signalling to Akt/PKB (protein kinase B) is attenuated by the additive effects of inhibiting p110α/p110β/p110δ in all cell lines tested. However, inhibition of p110α alone was sufficient to block insulin signalling to Akt/PKB in certain cell lines. The responsive cell lines all harboured H1047R mutations in PIK3CA and have high levels of p110α and class-Ia PI3K activity. This may explain the increased sensitivity of these cells to p110α inhibitors. We assessed the activation of Akt/PKB and tumour growth in xenograft models and found that tumours derived from two of the responsive cell lines were also responsive to A66 in vivo. These results show that inhibition of p110α alone has the potential to block growth factor signalling and reduce growth in a subset of tumours.  相似文献   

5.
Phosphoinositide 3-kinases (PI3-Ks) are an important emerging class of drug targets, but the unique roles of PI3-K isoforms remain poorly defined. We describe here an approach to pharmacologically interrogate the PI3-K family. A chemically diverse panel of PI3-K inhibitors was synthesized, and their target selectivity was biochemically enumerated, revealing cryptic homologies across targets and chemotypes. Crystal structures of three inhibitors bound to p110gamma identify a conformationally mobile region that is uniquely exploited by selective compounds. This chemical array was then used to define the PI3-K isoforms required for insulin signaling. We find that p110alpha is the primary insulin-responsive PI3-K in cultured cells, whereas p110beta is dispensable but sets a phenotypic threshold for p110alpha activity. Compounds targeting p110alpha block the acute effects of insulin treatment in vivo, whereas a p110beta inhibitor has no effect. These results illustrate systematic target validation using a matrix of inhibitors that span a protein family.  相似文献   

6.

Background

The phosphoinositide 3-kinase (PI3K)/Akt pathway is involved in neuroblastoma development where Akt/PKB activation is associated with poor prognosis. PI3K activity subsequently activates Akt/PKB, and as mutations of PI3K are rare in neuroblastoma and high levels of PI3K subunit p110delta is associated with favorable disease with low p-Akt/PKB, the levels of other PI3K subunits could be important for Akt activation.

Methods

Protein levels of Type IA PI3K catalytic and regulatory subunits were investigated together with levels of phosphorylated Akt/PKB and the PI3K negative regulator PTEN in primary neuroblastoma tumors. Relation between clinical markers and protein levels were evaluated through t-tests.

Results

We found high levels of p-Akt/PKB correlating to aggressive disease and p-Akt/PKB (T308) showed inverse correlation to PTEN levels. The regulatory isomers p55alpha/p50alpha showed higher levels in favorable neuroblastoma as compared with aggressive neuroblastoma. The PI3K-subunit p110alpha was found mainly in advanced tumors while p110delta showed higher levels in favorable neuroblastoma.

Conclusions

Activation of the PI3K/Akt pathway is seen in neuroblastoma tumors, however the contribution of the different PI3K isoforms is unknown. Here we show that p110alpha is preferentially expressed in aggressive neuroblastomas, with high p-Akt/PKB and p110delta is mainly detected in favorable neuroblastomas, with low p-Akt/PKB. This is an important finding as PI3K-specific inhibitors are suggested for enrollment in treatment of neuroblastoma patients.
  相似文献   

7.
Fc(epsilon)RI-induced Ca2+ signaling in mast cells is initiated by activation of cytosolic tyrosine kinases. Here, in vitro phospholipase assays establish that the phosphatidylinositol 3-kinase (PI 3-kinase) lipid product, phosphatidylinositol 3,4,5-triphosphate, further stimulates phospholipase Cgamma2 that has been activated by conformational changes associated with tyrosine phosphorylation or low pH. A microinjection approach is used to directly assess the consequences of inhibiting class IA PI 3-kinases on Ca2+ responses after Fc(epsilon)RI cross-linking in RBL-2H3 cells. Injection of antibodies to the p110beta or p110delta catalytic isoforms of PI 3-kinase, but not antibodies to p110alpha, lengthens the lag time to release of Ca2+ stores and blunts the sustained phase of the calcium response. Ca2+ responses are also inhibited in cells microinjected with recombinant inositol polyphosphate 5-phosphatase I, which degrades inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), or heparin, a competitive inhibitor of the Ins(1,4,5)P3 receptor. This indicates a requirement for Ins(1,4,5)P3 to initiate and sustain Ca2+ responses even when PI 3-kinase is fully active. Antigen-induced cell ruffling, a calcium-independent event, is blocked by injection of p110beta and p110delta antibodies, but not by injection of 5-phosphatase I, heparin, or anti-p110alpha antibodies. These results suggest that the p110beta and p110delta isoforms of PI 3-kinase support Fc(epsilon)RI-induced calcium signaling by modulating Ins(1,4,5)P3 production, not by directly regulating the Ca2+ influx channel.  相似文献   

8.
Phosphoinositide 3'-kinases (PI3Ks) constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. PI3Ks are heterodimers made up of four different 110-kDa catalytic subunits (p110alpha, p110beta, p110gamma, and p110delta) and a smaller regulatory subunit. Despite a clear implication of PI3Ks in survival signaling, the contribution of the individual PI3K isoforms has not been elucidated. To address this issue, we generated Rat1 fibroblasts that co-express c-Myc and membrane targeted derivates of the different p110 isoforms. Here we present data for the first time showing that activation of PI3-kinase signaling through membrane localization of p110beta, p110gamma, and p110delta protects c-Myc overexpressing Rat1 fibroblasts from apoptosis caused by serum deprivation like it has been described for p110alpha. Expression of each p110 isoform reduces significantly caspase-3 like activity in this apoptosis model. Decreased caspase-3 activity correlates with the increase in Akt phosphorylation in cells that contain one of the myristoylated p110 isoforms. p110 isoform-mediated protection from cell death was abrogated upon expression of a kinase-negative version of Akt.  相似文献   

9.
Phosphoinositide (PI) 3-kinases are critical regulators of mast cell degranulation. The Class IA PI 3-kinases p85/p110beta and p85/p110delta but not p85/p110alpha are required for antigen-mediated calcium flux in RBL-2H3 cells (Smith, A. J., Surviladze, Z., Gaudet, E. A., Backer, J. M., Mitchell, C. A., and Wilson, B. S. et al., (2001) J. Biol. Chem. 276, 17213-17220). We now examine the role of Class IA PI 3-kinases isoforms in degranulation itself, using a single-cell degranulation assay that measures the binding of fluorescently tagged annexin V to phosphatidylserine in the outer leaflet of the plasma membrane of degranulated mast cells. Consistent with previous data, antibodies against p110delta and p110beta blocked FcepsilonR1-mediated degranulation in response to FcepsilonRI ligation. However, antigen-stimulated degranulation was also inhibited by antibodies against p110alpha, despite the fact that these antibodies have no effect on antigen-induced calcium flux. These data suggest that p110alpha mediates a calcium-independent signal during degranulation. In contrast, only p110beta was required for enhancement of antigen-stimulated degranulation by adenosine, which augments mast cell-mediated airway inflammation in asthma. Finally, we examined carbachol-stimulated degranulation in RBL2H3 cells stably expressing the M1 muscarinic receptor (RBL-2H3-M1 cells). Surprisingly, carbachol-stimulated degranulation was blocked by antibody-mediated inhibition of the Class III PI 3-kinase hVPS34 or by titration of its product with FYVE domains. Antibodies against Class IA PI 3-kinases had no effect. These data demonstrate: (a) a calcium-independent role for p110alpha in antigen-stimulated degranulation; (b) a requirement for p110beta in adenosine receptor signaling; and (c) a requirement for hVPS34 during M1 muscarinic receptor signaling. Elucidation of the intersections between these distinct pathways will lead to new insights into mast cell degranulation.  相似文献   

10.
The Class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositides. Although closely related, experimental evidence suggests that the four Class I PI3Ks may be functionally distinct. To further study their unique biochemical properties, the three human Class Ia PI3K (alpha, beta, and delta) p110 catalytic domains were cloned and co-expressed with the p85alpha regulatory domain in Sf9 cells. None of the p110 subunits were successfully expressed in the absence of p85alpha. Successful expression and purification of each p85alpha/p110 protein required using an excess of the p110 vector over the p85 vector during co-infection of Sf9 cells. Proteins were purified as the p85alpha/p110 complex by nickel affinity chromatography through an N-terminal His-tag on the p110 subunit using an imidazole gradient. The purification yields were high using the optimized ratio of p85/p110 vector and small culture volumes, with 24mg/L cell culture media for p85alpha/p110alpha, 17.5mg/L for p85alpha/p110delta, and 3.5mg/L for p85alpha/p110beta. The identity of each purified isoform was confirmed by mass spectral analysis and immunoblotting. The activities of the three p85alpha/p110 proteins and the Class Ib p110gamma catalytic domain were investigated using phosphatidylinositol 4,5-bisphosphate (PIP2) as the substrate in a PIP2/phosphatidylserine (PS) liposome. All four enzymes exhibited reaction velocities that were dependent on the surface concentration of PIP2. The surface concentrations that gave maximal activity for each human isoform with 0.5mM PIP2 were 2.5mol% PIP2 for p110gamma, 7.5mol% for p85alpha/p110beta, and 10mol% PIP2 for p85alpha/p110alpha and p85alpha/p110delta. The specific activity of p85alpha/p110alpha was three to five times higher than that of the other human isoforms. These kinetic differences may contribute to the unique roles of these isoforms in cells.  相似文献   

11.
Lipid rafts are membrane microdomains distinct from caveolae, whose functions in polypeptide growth factor signalling remain unclear. Here we show that in small cell lung cancer (SCLC) cells, specific growth factor receptors such as c-Kit associate with lipid rafts and that these domains play a critical role in the activation of phosphoinositide 3-kinase (PI3K) signalling. The class IA p85/p110alpha associated with Src in lipid rafts and was activated by Src in vitro. Lipid raft integrity was essential for Src activation in response to stem cell factor (SCF) and raft disruption selectively inhibited activation of protein kinase B (PKB)/Akt in response to SCF stimulation. Moreover, inhibition of Src kinases blocked PKB/Akt activation and SCLC cell growth. The use of fibroblasts with targeted deletion of the Src family kinase genes confirmed the role of Src kinases in PKB/Akt activation by growth factor receptors. Moreover a constitutively activated mutant of Src also stimulated PI3K/Akt in lipid rafts, indicating that these microdomains play a role in oncogenic signalling. Together our data demonstrate that lipid rafts play a key role in the activation of PI3K signalling by facilitating the interaction of Src with specific PI3K isoforms.  相似文献   

12.
Phosphoinositide 3-kinases (PI3-Ks) are an ubiquitous class of signaling enzymes that regulate diverse cellular processes including growth, differentiation, and motility. Physiological roles of PI3-Ks have traditionally been assigned using two pharmacological inhibitors, LY294002 and wortmannin. Although these compounds are broadly specific for the PI3-K family, they show little selectivity among family members, and the development of isoform-specific inhibitors of these enzymes has been long anticipated. Herein, we prepare compounds from two classes of arylmorpholine PI3-K inhibitors and characterize their specificity against a comprehensive panel of targets within the PI3-K family. We identify multiplex inhibitors that potently inhibit distinct subsets of PI3-K isoforms, including the first selective inhibitor of p110beta/p110delta (IC(50) p110beta=0.13 microM, p110delta=0.63 microM). We also identify trends that suggest certain PI3-K isoforms may be more sensitive to potent inhibition by arylmorpholines, thereby guiding future drug design based on this pharmacophore.  相似文献   

13.
The phosphoinositide 3-kinase (PI3K) catalytic subunit p110delta, the most recently discovered member of the heterodimeric Class IA PI3K family, has been detected uniquely in leukocytes, but not in one member of the leukocyte family: platelets. We have examined freshly prepared isolates of human platelets for the presence of this enzyme, realizing that p110delta is highly susceptible to proteolytic degradation. We have utilized p110delta-directed Western blotting, RT-PCR, PI3K activity assays, and immunoprecipitations of PI3K Class IA subunits p85alpha, p85beta, and p110delta from lysed human platelets, as well as Triton X-100-insoluble cytoskeletal preparations from resting and thrombin receptor-activated platelets. We report that p110delta is present in association with p85alpha and p85beta in platelets, both in cytosolic and cytoskeletal fractions. The latter finding is consistent with the proposed role of p110delta in cytoskeletal function.  相似文献   

14.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

15.
Studying mononuclear phagocyte cell biology through genetic manipulation by non-viral transfection methods has been challenging due to the dual problems of low transfection efficiency and the difficulty in obtaining stable transfection. To overcome this problem, we developed a system for mediating RNA interference in monocytic cells. The p110alpha isoform of phosphoinositide 3-kinases (PI3Ks) was silenced using a lentiviral vector expressing short hairpin RNA (shRNA). This resulted in the generation of stable THP-1 and U-937 monocytic cell lines deficient in p110alpha. Notably, p110alpha was silenced without affecting levels of either the other class I(A) PI3K catalytic subunits p110beta and p110delta, or the p85alpha regulatory subunit. The role of p110alpha in mediating cell adherence was examined. Monocyte adherence induced in response to either lipopolysaccharide (LPS) or 1alpha,25-dihydroxycholecalciferol (D(3)) was blocked by the PI3K inhibitor LY294002. However, although adherence induced in response to D(3) was sensitive to silencing of p110alpha, LPS-induced adherence was not. Expression of the monocyte differentiation marker CD11b was also induced by D(3) in a PI3K-dependent manner and gene silencing using shRNA showed that p110alpha was also required for this effect. Taken together, these findings demonstrate that LPS and D(3) use distinct isoforms of class I(A) PI3K to induce functional responses and that lentiviral-mediated delivery of shRNA is a powerful approach to study monocyte biology.  相似文献   

16.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

17.
Protein kinase B appears to play a key role in insulin signaling and in the control of apoptosis, although the precise targets of PKB are incompletely understood. PKB exists as three isoforms (alpha, beta, and gamma) that may have unique as well as common functions within the cell. To facilitate understanding the precise roles of PKB and its isoforms, novel tools of widespread applicability are described. These tools are antisense oligonucleotide probes that enable the specific and potent knock down of endogenous PKB alpha, beta, or gamma isoforms, individually or in various combinations, including concurrent removal of all three isoforms. The probes were applied to dissect the role of PKB in phosphorylating glycogen synthase kinase-3 (GSK-3), a critical mediator in multiple responses, and other potentially key targets. Triple antisense knock down of PKB alpha, beta, and gamma so that total PKB was <6% blocked insulin-stimulated phosphorylation of endogenous GSK-3alpha and GSK-3beta isoforms by 67% and 45%, respectively, showing that GSK-3alpha and GSK-3beta are controlled by endogenous PKB. Each PKB isoform contributed to GSK-3alpha and GSK-3beta phosphorylation, with PKBbeta having the predominant role. Knock down of total PKB incompletely blocked insulin-stimulated phosphorylation of GSK-3alpha and GSK-3beta, and a pathway involving atypical PKCs, zeta/lambda, was shown to contribute to the signal. Triple antisense knock down of PKB alpha, beta, and gamma abrogated the insulin-stimulated phosphorylation of WNK1, ATP citrate lyase, and tuberin. However, antisense-mediated knock down of PKB alpha, beta, and gamma had no effect on insulin-stimulated DNA synthesis in 3T3-L1 adipocytes, indicating that pathways other than PKB mediate this response in these cells. Finally, our PKB antisense strategy provides a method of general usefulness for further dissecting the precise targets and roles of PKB and its isoforms.  相似文献   

18.
Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114 strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ or pan-class I inhibitors.  相似文献   

19.
Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (lambda, zeta, iota) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacylglycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated by insulin and yet inhibit insulin signaling to PI3K. Presently, we found that insulin signaling to insulin receptor substrate 1-dependent PI3K, PKB, and PKC lambda, and downstream processes, glucose transport and activation of ERK, were enhanced in skeletal muscles and adipocytes of mice in which the ubiquitous conventional diacylglycerol-sensitive PKC isoform, PKC alpha, was knocked out by homologous recombination. On the other hand, insulin provoked wortmannin-insensitive increases in immunoprecipitable PKC alpha activity in adipocytes and skeletal muscles of wild-type mice and rats. We conclude that 1) PKC alpha is not required for insulin-stimulated glucose transport, and 2) PKC alpha is activated by insulin at least partly independently of PI3K, and largely serves as a physiological feedback inhibitor of insulin signaling to the insulin receptor substrate 1/PI3K/PKB/PKC lambda/zeta/iota complex and dependent metabolic processes.  相似文献   

20.
Phosphoinositide 3-kinase (PI 3-kinase) activity is required for growth factor-induced cytoskeletal regulation and cell migration. We previously found that in MTLn3 rat adenocarcinoma cells, EGF-stimulated induction of actin barbed ends and lamellipod extension specifically requires the p85/p110alpha isoform of PI 3-kinase. To further characterize signaling by distinct PI 3-kinase isoforms, we have developed MTLn3 cells that transiently or stably overexpress either p110alpha or p110beta. Transient overexpression of p110beta inhibited EGF-stimulated lamellipod extension, whereas p110alpha-transfected cells showed normal EGF-stimulated lamellipod extension. Similar results were obtained by overexpression of kinase-dead p110beta, suggesting that effects on cytoskeletal signaling were due to competition with p85/p110alpha complexes. Stable overexpression of p110alpha appeared to be toxic, based on the difficulty in obtaining stable overexpressing clones. In contrast, cells expressing a 2-fold increase in p110beta were readily obtainable. Interestingly, cells stably expressing p110beta showed a marked inhibition of EGF-stimulated lamellipod extension. Using computer-assisted analysis of time-lapse images, we found that overexpression of p110beta caused a nearly complete inhibition of motility. Cells overexpressing p110beta showed normal activation of Akt and Erk, suggesting that overall PI 3-kinase signaling was intact. A chimeric p110 molecule containing the p85-binding and Ras-binding domains of p110alpha and the C2, helical, and kinase domains of p110beta, was catalytically active yet also inhibited EGF-stimulated lamellipod extension. These data highlight the differential signaling by distinct p110 isoforms. Identification of effectors that are differently regulated by p110alpha versus p110beta will be important for understanding cell migration and its role in metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号