首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of nitrogen dioxide by the activity of myeloperoxidase (MPO) in the presence of nitrite is now considered a key step in the pathophysiology of low-density lipoprotein (LDL) oxidation. This study shows that betanin, a phytochemical of the betalain class, inhibits the production of lipid hydroperoxides in human LDL submitted to a MPO/nitrite-induced oxidation. Kinetic measurements including time-course of particle oxidation and betanin consumption, either in the presence or in the absence of nitrite, suggest that the antioxidant effect is possibly the result of various actions. Betanin scavenges the initiator radical nitrogen dioxide and can also act as a lipoperoxyl radical-scavenger. In addition, unidentified oxidation product(s) of betanin by MPO/nitrite inhibit(s) the MPO/nitrite-induced LDL oxidation as effectively as the parent compound. In the light of betanin bioavailability and post-absorbtion distribution in humans, present findings may suggest favourable in vivo activity of this phytochemical.  相似文献   

2.
Nitric oxide, a pivotal molecule in vascular homeostasis, is converted under aerobic conditions to nitrite. Recent studies have shown that myeloperoxidase (MPO), an abundant heme protein released by activated leukocytes, can oxidize nitrite (NO(2-)) to a radical species, most likely nitrogen dioxide. Furthermore, hypochlorous acid (HOCl), the major strong oxidant generated by MPO in the presence of physiological concentrations of chloride ions, can also react with nitrite, forming the reactive intermediate nitryl chloride. Since MPO and MPO-derived HOCl, as well as reactive nitrogen species, have been implicated in the pathogenesis of atherosclerosis through oxidative modification of low density lipoprotein (LDL), we investigated the effects of physiological concentrations of nitrite (12.5-200 microm) on MPO-mediated modification of LDL in the absence and presence of physiological chloride concentrations. Interestingly, nitrite concentrations as low as 12.5 and 25 microm significantly decreased MPO/H2O2)/Cl- -induced modification of apoB lysine residues, formation of N-chloramines, and increases in the relative electrophoretic mobility of LDL. In contrast, none of these markers of LDL atherogenic modification were affected by the MPO/H2O2/NO2-) system. Furthermore, experiments using ascorbate (12.5-200 microm) and the tyrosine analogue 4-hydroxyphenylacetic acid (12.5-200 microm), which are both substrates of MPO, indicated that nitrite inhibits MPO-mediated LDL modifications by trapping the enzyme in its inactive compound II form. These data offer a novel mechanism for a potential antiatherogenic effect of the nitric oxide congener nitrite.  相似文献   

3.
Kostyuk VA  Kraemer T  Sies H  Schewe T 《FEBS letters》2003,537(1-3):146-150
In the presence of a H(2)O(2)-generating system, myeloperoxidase (MPO) caused conjugated diene formation in low-density lipoprotein (LDL), indicating lipid peroxidation which was dependent on nitrite but not on chloride. The oxidation of LDL was inhibited by micromolar concentrations of flavonoids such as (-)-epicatechin, quercetin, rutin, taxifolin and luteolin, presumably via scavenging of the MPO-derived NO(2) radical. The flavonoids served as substrates of MPO leading to products with distinct absorbance spectra. The MPO-catalyzed oxidation of flavonoids was accelerated in the presence of nitrite.  相似文献   

4.
The oxidative modification of low density lipoprotein (LDL) may play a significant role in atherogenesis. Tyrosyl radicals generated by myeloperoxidase (MPO) can act as prooxidants of LDL oxidation. Taking into consideration, that monophenolic compounds are able to form phenoxyl radicals in presence of peroxidases, we have tested salicylate, in its ability to act as a prooxidant in the MPO system. Measurement of conjugated dienes and lipid hydroperoxides were taken as indicators of lipid oxidation. Exposure of LDL preparations to MPO in presence of salicylate revealed that the drug could act as a catalyst of lipid oxidation in LDL. The radical scavenger ascorbic acid as well as heme poisons (cyanide, azide) and catalase were inhibitory. The main metabolite of salicylic acid, gentisic acid, showed inhibitory action in the MPO system. Even when lipid oxidation was maximally stimulated by salicylate the LDL oxidation was efficaciously counteracted in presence of gentisic acid at salicylate/gentisic acid ratios that could be reached in plasma of patients receiving aspirin medication. Gentisic acid was also able to impair the tyrosyl radical catalyzed LDL peroxidation. The results suggest that salicylate could act like tyrosine via a phenoxyl radical as a catalyst of LDL oxidative modification by MPO. But the prooxidant activity of this radical species is effectively counteracted by the salicylate metabolite gentisic acid.  相似文献   

5.
Betalains are natural pigments recently considered as compounds with potential antioxidative properties. In this work, ex vivo plasma spiking of pure either betanin or indicaxanthin, followed by isolation of low density lipoprotein (LDL), and measurement of its resistance to copper-induced oxidation, has been used to research if these betalains can bind to LDL and prevent oxidation of LDL lipids. When pooled human plasma from 10 healthy volunteers was incubated in the presence of 25-100 μM either betanin or indicaxanthin, incorporation of both compounds in LDL was observed, with a maximum binding of 0.52±0.08, and 0.51±0.06 nmoles of indicaxanthin and betanin, respectively, per mg LDL protein. Indicaxanthin-enriched and betanin-enriched LDL were more resistant than homologous native LDL to copper-induced oxidation, as assessed by the elongation of the induction period. The incorporated indicaxanthin, however, appeared twice as effective as betanin in increasing the length of the lag phase, while both compounds did not affect the propagation rate. Both betalains were consumed during the inhibition period of lipid oxidation, and delayed consumption of LDL-beta carotene. Indicaxanthin, but not betanin, prevented vitamin E consumption at the beginning of LDL oxidation, and prolonged the time of its utilization. The resistance of LDL to oxidation when vitamin E and indicaxanthin acted separately in a sequence, was lower than that measured when they were allowed to act in combination, indicating some synergistic interaction between the two molecules. No prooxidant effect over a large concentration range of either betanin or indicaxanthin was observed, when either betalain was added to the LDL system undergoing a copper-induced oxidation.

These results show than indicaxanthin and betanin may bind to LDL, and are highly effective in preventing copper-induced lipid oxidation. Interaction with vitamin E appears to add a remarkable potential to indicaxanthin in the protection of LDL. Although molecular mechanisms remain uncompletely understood, various aspects of the action of betanin and indicaxanthin in preventing LDL lipid oxidation are discussed.  相似文献   

6.
Betalains are natural pigments recently considered as compounds with potential antioxidative properties. In this work, ex vivo plasma spiking of pure either betanin or indicaxanthin, followed by isolation of low density lipoprotein (LDL), and measurement of its resistance to copper-induced oxidation, has been used to research if these betalains can bind to LDL and prevent oxidation of LDL lipids. When pooled human plasma from 10 healthy volunteers was incubated in the presence of 25–100?μM either betanin or indicaxanthin, incorporation of both compounds in LDL was observed, with a maximum binding of 0.52±0.08, and 0.51±0.06?nmoles of indicaxanthin and betanin, respectively, per mg LDL protein. Indicaxanthin-enriched and betanin-enriched LDL were more resistant than homologous native LDL to copper-induced oxidation, as assessed by the elongation of the induction period. The incorporated indicaxanthin, however, appeared twice as effective as betanin in increasing the length of the lag phase, while both compounds did not affect the propagation rate. Both betalains were consumed during the inhibition period of lipid oxidation, and delayed consumption of LDL-beta carotene. Indicaxanthin, but not betanin, prevented vitamin E consumption at the beginning of LDL oxidation, and prolonged the time of its utilization. The resistance of LDL to oxidation when vitamin E and indicaxanthin acted separately in a sequence, was lower than that measured when they were allowed to act in combination, indicating some synergistic interaction between the two molecules. No prooxidant effect over a large concentration range of either betanin or indicaxanthin was observed, when either betalain was added to the LDL system undergoing a copper-induced oxidation.

These results show than indicaxanthin and betanin may bind to LDL, and are highly effective in preventing copper-induced lipid oxidation. Interaction with vitamin E appears to add a remarkable potential to indicaxanthin in the protection of LDL. Although molecular mechanisms remain uncompletely understood, various aspects of the action of betanin and indicaxanthin in preventing LDL lipid oxidation are discussed.  相似文献   

7.
Oxidative modification of low-density lipoprotein (LDL) is a pivotal process in early atherogenesis and can be brought about by myeloperoxidase (MPO), which is capable of reacting with nitrite, a NO metabolite. We studied MPO-mediated formation of conjugated dienes in isolated human LDL in dependence on the concentrations of nitrite and chloride. This reaction was strongly stimulated by low concentrations (5-50 microM) of nitrite which corresponds to the reported concentration in the arterial vessel wall. Under these conditions no protein tyrosine nitration occurred; this reaction required much higher nitrite concentrations (100 microM-1 mM). Chloride neither supported lipid peroxidation alone nor was its presence mandatory for the effect of nitrite. We propose a prominent role of lipid peroxidation for the proatherogenic action of the MPO/nitrite system, whereas peroxynitrite may be competent for protein tyrosine nitration of LDL. Monomeric and oligomeric flavan-3-ols present in cocoa products effectively counteracted, at micromolar concentrations, the MPO/nitrite-mediated lipid peroxidation of LDL. Flavan-3-ols also suppressed protein tyrosine nitration induced by MPO/nitrite or peroxynitrite as well as Cu2+-mediated lipid peroxidation of LDL. This multi-site protection by (-)-epicatechin or other flavan-3-ols against proatherogenic modification of LDL may contribute to the purported beneficial effects of dietary flavan-3-ols for the cardiovascular system.  相似文献   

8.
Mechanism of Nitrite-Induced Germination of Clostridium perfringens Spores   总被引:5,自引:2,他引:3  
A study has been undertaken to understand the mechanism(s) of the nitrite-induced germination of Clostridium perfringens S40 spores. An increase in germination rates of the spores in response to increasing NaNO2 concentrations was entirely dependent on both pH and temperature of incubation. Low pH and high temperature were effective in accelerating the germination rate, the maximal germination level being reached at pH 4.0 and 60°C in the presence of 0.5 M NaNO2. On the basis of germination rate, the activation energy (μ) for the nitrite-induced germination calculated was approximately 9.9 kcal/mol. Germination was greatly stimulated after pretreatment of spores with DTT at pH 10.5 to remove the coats. Furthermore, cortical fragments prepared from spores of the same organism were lysed not only by lysozyme but also by NaNO2. Hexosamine-containing material was also solubilized by these reagents. However, nitrite, unlike lysozyme, released a considerable amount of free hexosamine as well. These results suggest that nitrite-induced germination may involve an interaction of sodium nitrite as nitrous acid with some component of the cortex. A possible mechanism of nitrite-induced germination is discussed.  相似文献   

9.
Lipid peroxidation (LPO) of low-density lipoprotein (LDL) is believed to be a pivotal process rendering this plasma lipoprotein atherogenic. Several endogenous factors have been proposed to mediate LPO of LDL, among them myeloperoxidase (MPO), which is active in atherosclerotic lesions, and the plasma level of which has been proposed to be a prognostic parameter for cardiac events. Nitrite, a major oxidation product of nitric oxide, is substrate of MPO and a cofactor of MPO-mediated LPO under physiological conditions. Dietary flavonoids including (-)-epicatechin, a major flavan-3-ol in cocoa products, grapes and wine, are substrates of MPO as well as potent inhibitors of LPO in LDL at micromolar concentrations. Moreover, they strongly suppress protein tyrosine nitration of LDL by MPO/nitrite or peroxynitrite. By blunting undesirable MPO-mediated actions of nitrite, presumably via scavenging of the strong prooxidant and nitrating *NO2 radical, dietary flavonoids modulate NO metabolism in a favorable direction and thus counteract endothelial dysfunction. This article gives a survey on recent progress in this field with special reference to own recently published work.  相似文献   

10.
We examined the effect of bicarbonate on the peroxidase activity of copper-zinc superoxide dismutase (SOD1), using the nitrite anion as a peroxidase probe. Oxidation of nitrite by the enzyme-bound oxidant results in the formation of the nitrogen dioxide radical, which was measured by monitoring 5-nitro-gamma-tocopherol formation. Results indicate that the presence of bicarbonate is not required for the peroxidase activity of SOD1, as monitored by the SOD1/H(2)O(2)-mediated nitration of gamma-tocopherol in the presence of nitrite. However, bicarbonate enhanced SOD1/H(2)O(2)-dependent oxidation of tocopherols in the presence and absence of nitrite and dramatically enhanced SOD1/H(2)O(2)-mediated oxidation of unsaturated lipid in the presence of nitrite. These results, coupled with the finding that bicarbonate protects against inactivation of SOD1 by H(2)O(2), suggest that SOD1/H(2)O(2) oxidizes the bicarbonate anion to the carbonate radical anion. Thus, the amplification of peroxidase activity of SOD1/H(2)O(2) by bicarbonate is attributed to the intermediary role of the diffusible oxidant, the carbonate radical anion. We conclude that, contrary to a previous report (Sankarapandi, S., and Zweier, J. L. (1999) J. Biol. Chem. 274, 1226-1232), bicarbonate is not required for peroxidase activity mediated by SOD1 and H(2)O(2). However, bicarbonate enhanced the peroxidase activity of SOD1 via formation of a putative carbonate radical anion. Biological implications of the carbonate radical anion in free radical biology are discussed.  相似文献   

11.
Nitric oxide-derived oxidants (e.g., peroxynitrite) are believed to participate in antimicrobial activities as part of normal host defenses but also in oxidative tissue injury in inflammatory disorders. A similar role is ascribed to the heme enzyme myeloperoxidase (MPO), the most abundant protein of polymorphonuclear leukocytes, which are the terminal phagocytosing effector cells of the innate immune system. Concomitant production of peroxynitrite and release of millimolar MPO are characteristic events during phagocytosis. In order to understand the mode of interaction between MPO and peroxynitrite, we have performed a comprehensive stopped-flow investigation of the reaction between all physiological relevant redox intermediates of MPO and peroxynitrite. Both iron(III) MPO and iron(II) MPO are rapidly converted to compound II by peroxynitrite in monophasic reactions with calculated rate constants of (6.8+/-0.1) x 10(6) M(-1)s(-1) and (1.3+/-0.2) x 10(6) M(-1)s(-1), respectively (pH 7.0 and 25 degrees C). Besides these one- and two-electron reduction reactions of peroxynitrite, which produce nitrogen dioxide and nitrite, a one-electron oxidation to the oxoperoxonitrogen radical must occur in the fast monophasic transition of compound I to compound II mediated by peroxynitrite at pH 7.0 [(7.6+/-0.1) x 10(6) M(-1)s(-1)]. In addition, peroxynitrite induced a steady-state transition from compound III to compound II with a rate of (1.0+/-0.3) x 10(4) M(-1)s(-1). Thus, the interconversion among the various oxidation states of MPO that is prompted by peroxynitrite is remarkable. Reaction mechanisms are proposed and the physiological relevance is discussed.  相似文献   

12.
It was established that nitrite in the presence of chloride, bromide, and thiocyanate decreases the rate of hydrogen peroxide decomposition by catalase. The decrease was recorded by the permanganatometric method and by a method of dynamic calorimetry. Nitrite was not destroyed in the course of the reaction and the total value of heat produced in the process was not changed by its presence. These facts suggest that nitrite induces inhibition of catalase with no change in the essence of the enzymatic process. Even micromolar nitrite concentrations induced a considerable decrease in catalase activity. However, in the absence of chloride, bromide, and thiocyanate inhibition was not observed. In contrast, fluoride protected catalase from nitrite inhibition in the presence of the above-mentioned halides and pseudohalide. As hydrogen peroxide is a necessary factor for triggering a number of important toxic effects of nitrite, the latter increases its toxicity by inhibiting catalase. This was shown by the example of nitrite-induced hemoglobin oxidation. The naturally existing gradient of chloride and other anion concentrations between intra- and extracellular media appears to be the most important mechanism of cell protection from inhibition of intracellular catalase by nitrite. Possible mechanisms of this inhibition are discussed.  相似文献   

13.
Initiation of lipid peroxidation and the formation of bioactive eicosanoids are pivotal processes in inflammation and atherosclerosis. Currently, lipoxygenases, cyclooxygenases, and cytochrome P450 monooxygenases are considered the primary enzymatic participants in these events. Myeloperoxidase (MPO), a heme protein secreted by activated leukocytes, generates reactive intermediates that promote lipid peroxidation in vitro. For example, MPO catalyzes oxidation of tyrosine and nitrite to form tyrosyl radical and nitrogen dioxide ((.)NO(2)), respectively, reactive intermediates capable of initiating oxidation of lipids in plasma. Neither the ability of MPO to initiate lipid peroxidation in vivo nor its role in generating bioactive eicosanoids during inflammation has been reported. Using a model of inflammation (peritonitis) with MPO knockout mice (MPO(-/-)), we examined the role for MPO in the formation of bioactive lipid oxidation products and promoting oxidant stress in vivo. Electrospray ionization tandem mass spectrometry was used to simultaneously quantify individual molecular species of hydroxy- and hydroperoxy-eicosatetraenoic acids (H(P)ETEs), F(2)-isoprostanes, hydroxy- and hydroperoxy-octadecadienoic acids (H(P)ODEs), and their precursors, arachidonic acid and linoleic acid. Peritonitis-triggered formation of F(2)-isoprostanes, a marker of oxidant stress in vivo, was reduced by 85% in the MPO(-/-) mice. Similarly, formation of all molecular species of H(P)ETEs and H(P)ODEs monitored were significantly reduced (by at least 50%) in the MPO(-/-) group during inflammation. Parallel analyses of peritoneal lavage proteins for protein dityrosine and nitrotyrosine, molecular markers for oxidative modification by tyrosyl radical and (.)NO(2), respectively, revealed marked reductions in the content of nitrotyrosine, but not dityrosine, in MPO(-/-) samples. Thus, MPO serves as a major enzymatic catalyst of lipid peroxidation at sites of inflammation. Moreover, MPO-dependent formation of (.)NO-derived oxidants, and not tyrosyl radical, appears to serve as a preferred pathway for initiating lipid peroxidation and promoting oxidant stress in vivo.  相似文献   

14.
Oxygenated cholesterols (oxysterols) formed during oxidation of low-density lipoprotein (LDL) are associated with endothelial dysfunction and atherogenesis. We compared the profile of oxysterols in modified human LDL obtained on reaction with myeloperoxidase/H2O2 plus nitrite (MPO/H2O2/nitrite-oxLDL) with that on Cu2+ -catalyzed oxidation. The 7beta-hydroxycholesterol/7-ketocholesterol ratio was markedly higher in MPO/H2O2/nitrite-oxLDL than in Cu2+ -oxidized LDL (7.9 +/- 3.0 versus 0.94 +/- 0.10). Like MPO/H2O2/nitrite-oxLDL, 7beta-hydroxycholesterol was cytotoxic toward endothelial cells through eliciting oxidative stress. Cytotoxicity was accompanied by DNA fragmentation and was prevented by the NADPH oxidase inhibitor apocynin, suggesting stimulation of NADPH oxidase-mediated O2-* formation. 7-Ketocholesterol was only cytotoxic when added alone, whereas a 1:1-mixture with 7beta-hydroxycholesterol surprisingly was noncytotoxic. We conclude from our data that (i) 7beta-hydroxycholesterol is a pivotal cytotoxic component of oxidized LDL, (ii) 7-ketocholesterol protects against 7beta-hydroxycholesterol in oxysterol mixtures or oxLDL, (iii) the 7beta-hydroxycholesterol/7-ketocholesterol ratio is a crucial determinant for cytotoxicity of oxidized LDL species and oxysterol mixtures, and (iv) the low share of 7-ketocholesterol explains the higher cytotoxicity of MPO/H2O2/nitrite-oxLDL than other forms of oxidized LDL. The dietary polyphenol (-)-epicatechin inhibited not only formation but also cytotoxic actions of both oxLDL and oxysterols.  相似文献   

15.
Myeloperoxidase (MPO), a heme enzyme secreted by activated phagocytes, catalyzes the oxidation of halides to hypohalous acids. At plasma concentrations of halides, hypochlorous acid (HOCl) is the major strong oxidant produced. In contrast, the related enzyme eosinophil peroxidase preferentially generates hypobromous acid (HOBr). Since reagent and MPO-derived HOCl converts low-density lipoprotein (LDL) to a potentially atherogenic form, we investigated the effects of HOBr on LDL modification. Compared to HOCl, HOBr caused 2-3-fold greater oxidation of tryptophan and cysteine residues of the protein moiety (apoB) of LDL and 4-fold greater formation of fatty acid halohydrins from the lipids in LDL. In contrast, HOBr was 2-fold less reactive than HOCl with lysine residues and caused little formation of N-bromamines. Nevertheless, HOBr caused an equivalent increase in the relative electrophoretic mobility of LDL as HOCl, which was not reversed upon subsequent incubation with ascorbate, in contrast to the shift in mobility caused by HOCl. Similar apoB modifications were observed with HOBr generated by MPO/H(2)O(2)/Br(-). In the presence of equivalent concentrations of Cl(-) and Br(-), modifications of LDL by MPO resembled those seen in the presence of Br(-) alone. Interestingly, even at physiological concentrations of the two halides (100 mM Cl(-), 100 microM Br(-)), MPO utilized a portion of the Br(-) to oxidize apoB cysteine residues. MPO also utilized the pseudohalide thiocyanate to oxidize apoB cysteine residues. Our data show that even though HOBr has different reactivities than HOCl with apoB, it is able to alter the charge of LDL, converting it into a potentially atherogenic particle.  相似文献   

16.
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL   总被引:1,自引:0,他引:1  
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.  相似文献   

17.
Oxidation of oxyhemoglobin by nitrite is characterized by a lag period followed by an autocatalytic phase. The oxidation can be inhibited by the addition of morpholine, piperidine, triethanolamine or triethylamine (6 mM each). These amines are known to react with nitrogen dioxide to yield nitrosamine. Unexpectedly, aniline or aminopyrine (120 microM each) markedly inhibited the oxidation. These compounds, but not the other amines given above, inhibited the peroxide compound formation from methemoglobin and hydrogen peroxide. The results establish that, during the oxidation, the peroxide compound is generated and converts nitrite into nitrogen dioxide by its peroxidatic activity, resulting in an autocatalytic phase.  相似文献   

18.
19.
Nitrotyrosine is widely used as a marker of post-translational modification by the nitric oxide ((.)NO, nitrogen monoxide)-derived oxidant peroxynitrite (ONOO(-)). However, since the discovery that myeloperoxidase (MPO) and eosinophil peroxidase (EPO) can generate nitrotyrosine via oxidation of nitrite (NO(2)(-)), several questions have arisen. First, the relative contribution of peroxidases to nitrotyrosine formation in vivo is unknown. Further, although evidence suggests that the one-electron oxidation product, nitrogen dioxide ((*)NO(2)), is the primary species formed, neither a direct demonstration that peroxidases form this gas nor studies designed to test for the possible concomitant formation of the two-electron oxidation product, ONOO(-), have been reported. Using multiple distinct models of acute inflammation with EPO- and MPO-knockout mice, we now demonstrate that leukocyte peroxidases participate in nitrotyrosine formation in vivo. In some models, MPO and EPO played a dominant role, accounting for the majority of nitrotyrosine formed. However, in other leukocyte-rich acute inflammatory models, no contribution for either MPO or EPO to nitrotyrosine formation could be demonstrated. Head-space gas analysis of helium-swept reaction mixtures provides direct evidence that leukocyte peroxidases catalytically generate (*)NO(2) formation using H(2)O(2) and NO(2)(-) as substrates. However, formation of an additional oxidant was suggested since both enzymes promote NO(2)(-)-dependent hydroxylation of targets under acidic conditions, a chemical reactivity shared with ONOO(-) but not (*)NO(2). Collectively, our results demonstrate that: 1) MPO and EPO contribute to tyrosine nitration in vivo; 2) the major reactive nitrogen species formed by leukocyte peroxidase-catalyzed oxidation of NO(2)(-) is the one-electron oxidation product, (*)NO(2); 3) as a minor reaction, peroxidases may also catalyze the two-electron oxidation of NO(2)(-), producing a ONOO(-)-like product. We speculate that the latter reaction generates a labile Fe-ONOO complex, which may be released following protonation under acidic conditions such as might exist at sites of inflammation.  相似文献   

20.
Oxidative modification of LDL may be important in the initiation and/or progression of atherosclerosis, but the precise mechanisms through which low density lipoprotein (LDL) is oxidized are unknown. Recently, evidence for the existence of HOCl-oxidized LDL in human atherosclerotic lesions has been reported, and myeloperoxidase (MPO), which is thought to act through production of HOCl, has been identified in human atherosclerotic lesions. In the present report we describe the formation of 2,4-dinitrophenylhydrazine (DNPH)-reactive modifications in the apolipoprotein (apo) by exposure of LDL to myeloperoxidase in vitro. In contrast with the complex mixture of peptides from oxidation of LDL with reagent HOCl, oxidation with MPO in vitro produced a major tryptic peptide showing absorbance at 365 nm. This peptide was isolated and characterized as VELEVPQL(*C)SFILK..., corresponding to amino acid residues 53-66...on apoB-100. Mass spectrometric analyses of two tryptic peptides from oxidation of LDL by HOCl indicated formation of the corresponding methionine sulfoxide (M=O), cysteinyl azo (*C), RS -N= N-DNP, derivatives of EEL(*C)T(M=O)FIR and LNDLNS VLV(M=O)PTFHVPFTDLQVPS(*C)K, which suggest oxidation to the corresponding sulfinic acids (RSO2H) by HOCl.The present results demonstrate that DNPH-reactive modifications other than aldehydes and ketones can be formed in the oxidation of proteins and illustrate how characterization of specific products of protein oxidation can be useful in assessing the relative contributions of different and unexpected mechanisms to the oxidation of LDL and other target substrates. The data also suggest a direct interaction of the LDL particle with the active site on myeloperoxidase and indicate that effects of the protein microenvironment can greatly influence product formation and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号