首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Here, we identified human myogenic progenitor cells coexpressing Pax7, a marker of muscle satellite cells and bone-specific alkaline phosphatase, a marker of osteoblasts, in regenerating muscle. To determine whether human myogenic progenitor cells are able to act as osteoprogenitor cells, we cultured both primary and immortalized progenitor cells derived from the healthy muscle of a nondystrophic woman. The undifferentiated myogenic progenitors spontaneously expressed two osteoblast-specific proteins, bone-specific alkaline phosphatase and Runx2, and were able to undergo terminal osteogenic differentiation without exposure to an exogenous inductive agent such as bone morphogenetic proteins. They also expressed the muscle lineage-specific proteins Pax7 and MyoD, and lost their osteogenic characteristics in association with terminal muscle differentiation. Both myoblastic and osteoblastic properties are thus simultaneously expressed in the human myogenic cell lineage prior to commitment to muscle differentiation. In addition, C3 transferase, a specific inhibitor of Rho GTPase, blocked myogenic but not osteogenic differentiation of human myogenic progenitor cells. These data suggest that human myogenic progenitor cells retain the capacity to act as osteoprogenitor cells that form ectopic bone spontaneously, and that Rho signaling is involved in a critical switch between myogenesis and osteogenesis in the human myogenic cell lineage.  相似文献   

8.
9.
10.
11.
Heparin and heparan sulfate mediated basic fibroblast growth factor (bFGF) signaling plays an important role in skeletal muscle homeostasis by maintaining a balance between proliferation and differentiation of muscle progenitor cells. In this study we investigate the role of a synthetic mimic of heparin, poly(sodium-4-styrenesulfonate) (PSS), on myogenic differentiation of C2C12 cells. Exogenous supplementation of PSS increased the differentiation of C2C12 cells in a dose-dependent manner, while the formation of multinucleated myotubes exhibited a nonmonotonic dependence with the concentration of PSS. Our results further suggest that one possible mechanism by which PSS promotes myogenic differentiation is by downregulating the mitogen activated extracellular regulated signaling kinase (MAPK/ERK) pathway. The binding ability of PSS to bFGF was found to be comparable to heparin through molecular docking calculations and by native PAGE. Such synthetic heparin mimics could offer a cost-effective alternative to heparin and also reduce the risk associated with batch-to-batch variation and contamination of heparin.  相似文献   

12.
13.
14.
Undifferentiated limb bud mesenchyme consists of at least two separate, possibly predetermined, populations of progenitor cells, one derived from somitic mesoderm that gives rise exclusively to skeletal muscle and one derived from somatopleural mesoderm that gives rise to the cartilage and connective tissue of the limb. In the present study, we demonstrate that the inherent migratory capacity of myogenic precursor cells can be used to physically separate the myogenic and chondrogenic progenitor cells of the undifferentiated limb mesenchyme at the earliest stages of limb development. When the undifferentiated mesenchyme of stage 18/19 chick embryo wing buds or from the distal subridge region of stage 22 wing buds is placed intact upon the surface of fibronectin (FN)-coated petri dishes, a large population of cells emigrates out of the explants onto the FN substrates and differentiates into an extensive interlacing network of bipolar spindle-shaped myoblasts and multinucleated myotubes that stain with monoclonal antibody against muscle-specific fast myosin light chain. In contrast, the cells of the explants that remain in place and do not migrate away undergo extensive cartilage differentiation. Significantly, there is no emigration of myogenic cells out of explants of stage 25 distal subridge mesenchyme, which lacks myogenic progenitor cells. Myogenic precursor cells stream out of mesenchyme explants in one or occasionally two discrete locations, suggesting they are spatially segregated in discrete regions of tissue at the time of its explantation. There are subtle overall differences in the morphologies of the myogenic cells that form in stage 18/19 and stage 22 distal subridge mesenchyme explants. Finally, groups of nonmyogenic nonfibroblastic cells which are fusiform-shaped and oriented in distinct parallel arrays characteristically are found along the periphery of stage 18/19 wing mesenchyme explants. Our observations provide support for the concept that undifferentiated limb mesenchyme consists of independent subpopulations of committed precursor cells and provides a system for studying the early determinative and regulatory events involved in myogenesis or chondrogenesis.  相似文献   

15.
16.
We previously reported that the in vitro maturation of CD49f(+)Thy1(-)CD45(-) (CD49f positive) fetal hepatic progenitor cells (HPCs) is supported by Thy1-positive mesenchymal cells derived from the fetal liver. These mesenchymal cell preparations contain two populations, one of a cuboidal shape and the other spindle shaped in morphology. In this study, we determined that the mucin-type transmembrane glycoprotein gp38 could distinguish cuboidal cells from spindle cells by immunocytochemistry. RT-PCR analysis revealed differences between isolated CD49f(+/-)Thy1(+)gp38(+)CD45(-) (gp38 positive) cells and CD49f(+/-)Thy1(+)gp38(-)CD45(-) (gp38 negative) cells, whereas both cells expressed mesenchymal cell markers. The coculture with gp38-positive cells promoted the maturation of CD49f-positive HPCs, which was estimated by positivity for periodic acid-Schiff (PAS) staining, whereas the coculture with gp38-negative cells maintained CD49f-positive HPCs negative for PAS staining. The expression of mature hepatocyte markers, such as tyrosine aminotransferase, tryptophan-2,3-dioxygenase, and glucose-6-phosphatase, were upregulated on HPCs by coculture with gp38-positive cells. Furthermore, transmission electron microscopy revealed the acquisition of mature hepatocyte features by HPCs cocultured with gp38-positive cells. This effect on maturation of HPCs was inhibited by the addition of conditioned medium derived from gp38-negative cells. By contrast, the upregulation of bromodeoxyuridine incorporation by HPCs demonstrated the proliferative effect of coculture with gp38-negative cells. In conclusion, these results suggest that in vitro maturation of HPCs promoted by gp38-positive cells may be opposed by an inhibitory effect of gp38-negative cells, which likely maintain the immature, proliferative state of HPCs.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号