首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Differentiation and proliferation of almost all hemopoietic cell lines can now be studied in vitro. Cloning techniques and suspension cultures allow the study of proliferation of the multipotential hemopoietic progenitor cell and the committed progenitors for granulocytes, macrophages, eosinophils, megakryocytes, and erythrocytes. The proliferation of each of the committed progenitor cells is controlled by specific glycoproteins and two of these have recently been purified: granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin. The rate of proliferation of the GM-progenitor cells and their pattern of differentiation depends on the concentration of the hormone. At low concentrations of GM-CSF (10?11 M) fewer progenitor cells are stimulated and macrophage colonies rather than granulocyte colonies develop. The change in the direction of granulocyte-macrophage differentiation appears to be related to (a) the concentration of GM- CSF and (b) the different sensitivity of a subpopulation of monocyte colony-forming cells which are responsive to GM-CSF even at low concentrations of the regulator. Analysis of the rate of RNA synthesis by bone marrow cells has shown that GM-CSF stimulates the mature nondividing end cells of differentiation (ie, polymorphs) as well as the progenitor cells. Although GM-CSF and erythropoietin have been radiolabeled, binding studies have been hampered by the loss of biologic activity during the labeling procedure and the heterogeneity of the target cells to which the regulators bind. Surface proteins and receptors for erythrocytes have been well characterized but the relationships between these proteins and the cell surface proteins of nucleated blood cells is not well understood. It appears that some proteins are lost from the cell surface during the development of granulocytes, which are retained on the surface of the B lymphocyte. Other proteins such as chemotactic receptors and complement receptors only appear on the mature cells. External radiolabeling of the granulocyte surface using iodogen yielded a simple profile of 125I-labeled proteins when analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis.  相似文献   

3.
4.
In recent years, it has become evident that lipid peroxidation is not only a mechanism for deterioration of alimentary oils and fats, but can occur even in living cells, both in pathological and physiological conditions. Through its aldehydic products, it can regulate several cellular processes, as proliferation, differentiation and apoptosis of normal and neoplastic cells. In this review we describe some recent findings obtained in these fields.  相似文献   

5.
A variety of chemically different prooxidants causes Ca2+ release from mitochondria. This prooxidant-induced Ca2+ release occurs from intact mitochondria via a route which is physiologically relevant and may be regulated by protein monoADP-ribosylation. When the released Ca2+ is excessively 'cycled' by mitochondria (continuously taken up and released) the inner membrane is damaged. This leads to a decreased ability of mitochondria to retain Ca2+, uncoupling of mitochondria, and an impairment of ATP synthesis, which in turn deprives the cell of the energy necessary for the proper functioning of the Ca2+ ATPases of the endoplasmic (sarcoplasmic) reticulum, the nucleus and the plasma membrane. The ensuing rise of the cytosolic Ca2+ level cannot be counterbalanced by the damaged mitochondria which, under normoxic conditions, act as a safety device against an increase of the cytosolic Ca2+ concentration. The impaired ability of mitochondria to retain Ca2+ may lead to cell death. However, there is also evidence emerging that release of Ca2+ from mitochondria may be physiologically important for cell proliferation and differentiation.  相似文献   

6.
Lymphocyte homeostasis is a balance between lymphocyte proliferation and lymphocyte death. Tight control of apoptosis is essential for immune function, because its altered regulation can result in cancer and autoimmunity. Signals from members of the tumour-necrosis-factor receptor (TNF-R) family, such as Fas and TNF-R1, activate the caspase cascade and result in lymphocyte death by apoptosis. Anti-apoptotic proteins, such as FLIP (also known as FLICE/caspase-8 inhibitory protein) have recently been identified. FLIP expression is tightly regulated in T cells and might be involved in the control of both T-cell activation and death. Abnormal expression of FLIP might have a role not only in autoimmune diseases, but also in tumour development and cardiovascular disorders.  相似文献   

7.
The Hedgehog (Hh) signaling network is critical for patterning and organogenesis in mammals, and has been implicated in a variety of cancers. Smoothened (Smo), the gene encoding the principal signal transducer, is overexpressed frequently in breast cancer, and constitutive activation in MMTV-SmoM2 transgenic mice caused alterations in mammary gland morphology, increased proliferation, and changes in stem/progenitor cell number. Both in transgenic mice and in clinical specimens, proliferative cells did not usually express detectable Smo, suggesting the hypothesis that Smo functioned in a non-cell autonomous manner to stimulate proliferation. Here, we employed a genetically tagged mouse model carrying a Cre-recombinase-dependent conditional allele of constitutively active Smo (SmoM2) to test this hypothesis. MMTV-Cre- or adenoviral-Cre-mediated SmoM2 expression in the luminal epithelium, but not in the myoepithelium, was required for the hyper-proliferative phenotypes. High levels of proliferation were observed in cells adjacent or in close-proximity to Smo expressing cells demonstrating that SmoM2 expressing cells were stimulating proliferation via a paracrine or juxtacrine mechanism. In contrast, Smo expression altered luminal cell differentiation in a cell-autonomous manner. SmoM2 expressing cells, purified by fluorescence activated cell sorting (FACS) via the genetic fluorescent tag, expressed high levels of Ptch2, Gli1, Gli2, Jag2 and Dll-1, and lower levels of Notch4 and Hes6, in comparison to wildtype cells. These studies provide insight into the mechanism of Smo activation in the mammary gland and its possible roles in breast tumorigenesis. In addition, these results also have potential implications for the interpretation of proliferative phenotypes commonly observed in other organs as a consequence of hedgehog signaling activation.  相似文献   

8.
Summary The number of insect midgut cells is maintained homeostatically in vivo and in vitro. However, during starvation, the midgut shrinks and the rate of cell replacement appears to be suppressed. When they undergo metamorphosis, the internal organs of insects are drastically remodeled by cell proliferation, differentiation, and apoptotic processes, and the net number of cells usually increases. An extract of 1650 midguts ofPeriplaneta americana was fractionated by highperformance liquid chromatography (HPLC) to obtain the peptides that regulate these processes. The HPLC fractions were tested for myotropic activity in the foregut and for effects on cell proliferation or loss in primary cultures of larvalHeliothis virescens midgut cells and in a cell line derived from the last-instar larval fat body ofMamestra brassicae. Some fractions stimulated midgut stem cell proliferation and differentiation, while others caused loss of differentiated columnar and goblet cells. Other fractions stimulated cell proliferation in the larval fat body cells. Mention of products in this article does not imply endorsement by the U.S. Department of Agriculture.  相似文献   

9.
10.
11.
Migration, proliferation and death of vascular smooth muscle cells (VSMC) are important events in vascular pathology regulated by heparan sulfate proteoglycans and hence potentially by cell surface HS 6-O-endosulfatase1 (sulf1). Sulf1 mRNA expression was increased in cultured VSMC compared to rat aorta. Furthermore, adenovirus mediated overexpression of quail sulf1 decreased adhesion, and increased proliferation and apoptosis of VSMC. Overexpression of a dominant negative variant also decreased adhesion of VSMC and increased proliferation, apoptosis, migration and chemotaxis of VSMC. Our results imply that only normal levels of 6-O-sulfation maintained by sulf1 are optimal for several functions of VSMC.  相似文献   

12.
Regulation of neuronal proliferation and differentiation by nitric oxide   总被引:16,自引:0,他引:16  
Many studies have revealed the free radical nitric oxide (NO) to be an important modulator of vascular and neuronal physiology. It also plays a developmental role in regulating synapse formation and patterning. Recent studies suggest that NO may also mediate the switch from proliferation to differentiation during neurogenesis. Many mechanisms of this response are conserved between neuronal precursor cells and the cells of the vascular system, where NO can inhibit the proliferative response of endothelial and smooth-muscle cells to injury. In cultured neuroblastoma cells, NO synthase (NOS) expression is increased in the presence of various growth factors and mitogens. Subsequent production of NO leads to cessation of cell division and the acquisition of a differentiated phenotype. The inhibitory action of NO on neuroblast proliferation has also been demonstrated in vivo for vertebrate and invertebrate nervous systems, as well as in the adult brain. Potential downstream effectors of NO include the second messenger cyclic GMP, activation of the tumor-suppressor genes p53 and Rb, and the cyclin-dependent kinase inhibitor p21. These studies highlight a new role for NO in the nervous system, as a coordinator of proliferation and patterning during neural development and adult neurogenesis.  相似文献   

13.
In this paper, we consider the role of a macrophage secretory product in promoting thymocyte differentiation, as well as a macrophage-immune T cell interaction that results in augmented secretion of lymphostimulatory factors. When cultured with the thymocyte-differentiating factor (TDF), thymocytes show a physiological increase in H-2D and K, decreased sensitivity to lysis with anti-TL and complement, and acquisition of responsiveness in the mixed lymphocyte culture. Development of the mature phenotype requires 2 to 3 days of culture and, once attained, is stable. The induced antigenic changes do not require cell division. The activity demonstrated by TDF, which is not attributable to interferon and cannot be replaced by 2-mercaptoethanol, is also displayed by normal thymic macrophages themselves. Enhanced secretion of TDF and of a distinct mitogenic protein follows the interaction of macrophages and immune T cells. This interaction is shown to require physical contact of the two cell types and is regulated by products of the I-A region of the major histocompatibility complex.  相似文献   

14.
15.
The aim of this review is to provide insight into the molecular mechanisms by which activin A modulates cell proliferation, apoptosis, and carcinogenesis in vitro and in vivo. Activin A, a member of the TGFbeta superfamily, has various effects on diverse biological systems, including cell growth inhibition in many cell types. However, the mechanism(s) by which activin exerts its inhibitory effects are not yet understood. This review highlights activin's effects on activin receptors and signaling pathway, modulation of activin signaling, and regulation of cell proliferation and apoptosis by activin. Based on the experiences of all the authors, we emphasized cell cycle inhibitors such as p16 and p21 and regulators of apoptosis such as p53 and members of the bcl-2 family. Aside from activin's inhibition of cell proliferation and enhancement of apoptosis, other newly developed methods for molecular studies of apoptosis by activin were briefly presented that support the role of activin as an inhibitor of carcinogenesis and cancer progression. These methods include subtractive hybridization based on covalent bonding, a simple and accurate means to determine molecular profile of as few as 20 cells based on an RNA-PCR approach, and a messenger RNA-antisense DNA interference phenomenon (D-RNAi), resulting in a long-term gene knockout effects.  相似文献   

16.
Vascular endothelial growth factor (VEGF) is an angiogenic polypeptide that has been isolated from a variety of tumorigenic and nontransformed cell lines. Because of the importance of blood vessel growth to cell and tissue development, we have examined VEGF gene expression in a variety of mouse tissues and rodent models of cellular differentiation. Using a cloned murine VEGF cDNA we show that VEGF mRNA is expressed at relatively low levels in many adult mouse tissues examined. However, this message is dramatically induced in two models of cell differentiation: 3T3-adipose conversion and C2C12 myogenic differentiation. VEGF protein secretion is also induced in adipocyte differentiation. VEGF mRNA is markedly regulated in a pheochromocytoma (PC12) cell model of transformation and differentiation. The transformed undifferentiated cells express moderate levels of VEGF mRNA and this expression is virtually extinguished when cells differentiate into non-malignant neuron-like cells. Experiments employing phorbol esters and cAMP analogues indicate that VEGF mRNA expression is stimulated in preadipocytes by both protein kinase C and protein kinase A-mediated pathways. These results suggest that VEGF mRNA levels are closely linked to the process of cellular differentiation; they also clearly demonstrate that expression of this angiogenic factor is specifically regulated in a transformed cell line, possibly via aberrant activation of cellular second messenger pathways.  相似文献   

17.
The carcinogenic process in the liver is a multistep process, characterised by an altered ratio between cell proliferation and cell death. In the last few years, we have undertaken studies aimed at determining the possible differences exhibited by two different types of cell proliferation, namely compensatory regeneration and direct hyperplasia at a molecular and cellular level. These two types of proliferative stimuli appear to play different roles in liver carcinogenesis. The scope of this article is to summarise the present knowledge about the differences in the expression of genes involved in the entry of liver cells into cell cycle, between liver regeneration following cell loss and/or cell death and direct hyperplasia induced by primary mitogens.  相似文献   

18.
The stimulation of platelet-derived growth factor (PDGF) receptors shifts vascular smooth muscle (VSM) cells toward a more proliferative phenotype. Thrombin activates the same signaling cascades in VSM cells, namely the Ras/Raf/MEK/ERK and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways. Nonetheless, thrombin was not mitogenic, but rather increased the expression of the smooth muscle-specific myosin heavy chain (SM-MHC) indicative of an in vitro re-differentiation of VSM cells. A more detailed analysis of the temporal pattern and relative signal intensities revealed marked differences. The strong and biphasic phosphorylation of ERK1/2 in response to thrombin correlated with its ability to increase the activity of the SM-MHC promoter whereas Akt was only partially and transiently phosphorylated. By contrast, PDGF, a potent mitogen in VSM cells, induced a short-lived ERK1/2 phosphorylation but a complete and sustained phosphorylation of Akt. The phosphorylated form of Akt physically interacted with Raf. Moreover, Akt phosphorylated Raf at Ser(259), resulting in a reduced Raf kinase activity and a termination of MEK and ERK1/2 phosphorylation. Disruption of the PI 3-kinase signaling prevented the PDGF-induced Akt and Raf-Ser(259) phosphorylation. Under these conditions, PDGF elicited a more sustained MEK and ERK phosphorylation and increased SM-MHC promoter activity. Consistently, in cells that express dominant negative Akt, PDGF increased SM-MHC promoter activity. Furthermore, expression of constitutively active Akt blocked the thrombin-stimulated SM-MHC promoter activity. Thus, we present evidence that the balance and cross-regulation between the PI 3-kinase/Akt and Ras/Raf/MEK signaling cascades determine the temporal pattern of ERK1/2 phosphorylation and may thereby guide the phenotypic modulation of vascular smooth muscle cells.  相似文献   

19.
20.
Selective cell death of dopaminergic neurons in the substantia nigra is the major cause of Parkinson disease. Current evidence suggests that this cell death could be mediated by nitric oxide by-products such as nitrate and peroxynitrite. Because protein kinase C (PKC)-delta is implicated in apoptosis of various cell types, we studied its roles and activation mechanisms in nitric oxide (NO)-induced apoptosis of SN4741 dopaminergic cells. When cells were treated with sodium nitroprusside (SNP), a NO donor, endogenous PKC-delta was nitrated and activated. Immunoprecipitation revealed that p53 co-immunoprecipitated with PKC-delta and was phosphorylated at the 15th serine residue in SNP-treated cells. An in vitro kinase assay revealed that p53 was directly phosphorylated by SNP-activated PKC-delta. The p53 Ser-15 phosphorylation was suppressed in SNP-treated cells when the NO-mediated activation of PKC-delta was inhibited by rottlerin or (-)-epigallocatechin gallate. Within 3 h of p53 phosphorylation, its protein levels increased because of decreased ubiquitin-dependent proteosomal proteolysis, whereas the protein levels of MDM2, ubiquitin-protein isopeptide ligase, were down-regulated in a p53 phosphorylation-dependent fashion. Taken together, these results demonstrate that nitration-mediated activation of PKC-delta induces the phosphorylation of the Ser-15 residue in p53, which increases its protein stability, thereby contributing to the nitric oxide-mediated apoptosis-like cell death pathway. These findings may be expanded to provide new insight into the cellular mechanisms of Parkinson disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号