首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Connexins comprise gap junction channels, which create a direct conduit between the cytoplasms of adjacent cells and provide for intercellular communication. Therefore, the level of total cellular connexin protein can have a direct influence on the level of intercellular communication. Control of connexin protein levels can occur through different mechanisms during the connexin life cycle, such as by regulation of connexin gene expression and turnover of existing protein. The degradation of connexins has been extensively studied, revealing proteasomal, endolysosomal and more recently autophagosomal degradation mechanisms that modulate connexin turnover and, subsequently, affect intercellular communication. Here, we review the current knowledge of connexin degradation pathways.  相似文献   

2.
Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of intercellular coupling in response to cell stress and to regulate surfactant secretion. However, defining the precise signals transmitted through gap junction channels and the cross talk between gap junctions and other signaling pathways has proven difficult. Insights from what is known about roles for gap junctions in other systems in the context of the connexin expression pattern by lung cells can be used to predict potential roles for gap junctional communication between alveolar epithelial cells.  相似文献   

3.
Pathways and control of connexin oligomerization   总被引:6,自引:0,他引:6  
Connexins form gap junction channels that link neighboring cells into an intercellular communication network. Many cells that express multiple connexins produce heteromeric channels containing at least two connexins, which provides a means to fine tune gap junctional communication. Formation of channels by multiple connexins is controlled at two levels: by inherent structural compatibilities that enable connexins to hetero-oligomerize and by cellular mechanisms that restrict the formation of heteromers by otherwise compatible connexins. Here, I discuss roles for secretory compartments beyond the endoplasmic reticulum in connexin oligomerization and evidence that suggests that membrane microdomains help regulate connexin trafficking and assembly.  相似文献   

4.
In this review, we briefly summarize what is known about the properties of the three families of gap junction proteins, connexins, innexins and pannexins, emphasizing their importance as intercellular channels that provide ionic and metabolic coupling and as non-junctional channels that can function as a paracrine signaling pathway. We discuss that two distinct groups of proteins form gap junctions in deuterostomes (connexins) and protostomes (innexins), and that channels formed of the deuterostome homologues of innexins (pannexins) differ from connexin channels in terms of important structural features and activation properties. These differences indicate that the two families of gap junction proteins serve distinct, complementary functions in deuterostomes. In several tissues, including the CNS, both connexins and pannexins are involved in intercellular communication, but have different roles. Connexins mainly contribute by forming the intercellular gap junction channels, which provide for junctional coupling and define the communication compartments in the CNS. We also provide new data supporting the concept that pannexins form the non-junctional channels that play paracrine roles by releasing ATP and, thus, modulating the range of the intercellular Ca(2+)-wave transmission between astrocytes in culture.  相似文献   

5.
Connexins are proteins that form gap junctions between cells in various mammalian tissues. Because of their role in intercellular communication, connexins are important in the bystander cell death seen in Herpes simplex virus-thymidine kinase (HSV-TK) gene therapy for brain tumors. A selective review of connexin transduction/transfection studies with particular emphasis to central nervous system tumor cells is presented. In addition, specific references to studies with cell types that demonstrate low gap junction intercellular communication are presented. Data are included with the HT-29 colorectal tumor cell line to support the concept that enhancing gap junction protein expression in otherwise low gap junction communicating HT-29 cells increases bystander cell death and reduces tumor burden beyond what might be expected from HSV-TK and ganciclovir (GCV) treatment alone. Maximum in vitro bystander cell death was always produced when GCV treated co-cultures of TK-transduced and non-TK-transduced HT-29 cell lines were also transduced with connexin-43. When connexin was present in only one group of cells in the co-culture, there was more bystander cell death observed with connexin transduced into the non-TK-transduced cells, rather than the TK-transduced cells. The data presented reinforces conclusions made from earlier findings from cell line mixing experiments in which the non-TK-transduced cell population determined the level of bystander cell death (Burrows et al., 2002).  相似文献   

6.
Regulation of gap junctions by phosphorylation of connexins   总被引:21,自引:0,他引:21  
Gap junctions are a unique type of intercellular junction found in most animal cell types. Gap junctions permit the intercellular passage of small molecules and have been implicated in diverse biological processes, such as development, cellular metabolism, and cellular growth control. In vertebrates, gap junctions are composed of proteins from the "connexin" gene family. The majority of connexins are modified posttranslationally by phosphorylation, primarily on serine amino acids; however, phosphotyrosine has also been detected in connexin from cells coexpressing nonreceptor tyrosine protein kinases. Connexins are targeted by numerous protein kinases, of which some have been identified: protein kinase C, mitogen-activated protein kinase, and the v-Src tyrosine protein kinase. Phosphorylation has been implicated in the regulation of a broad variety of connexin processes, such as the trafficking, assembly/disassembly, degradation, as well as the gating of gap junction channels. This review examines the consequences of connexin phosphorylation for the regulation of gap junctional communication.  相似文献   

7.
Connexins, through gap junctional intercellular communication, are known to regulate many physiological functions involved in developmental processes such as cell proliferation, differentiation, migration and apoptosis. Strikingly, alterations of connexin expression and trafficking are often, if not always, associated with human developmental diseases and carcinogenesis. In this respect, disrupted trafficking dynamics and aberrant intracytoplasmic localization of connexins are considered as typical features of functionality failure leading to the pathological state. Recent findings demonstrate that interactions of connexins with numerous protein partners, which take place throughout connexin trafficking, are essential for gap junction formation, membranous stabilization and degradation. In the present study, we give an overview of the physiological molecular machinery and of the specific interactions between connexins and their partners, which are involved in connexin trafficking, and we highlight their changes in pathological situations.  相似文献   

8.
Connexins, through gap junctional intercellular communication, are known to regulate many physiological functions involved in developmental processes such as cell proliferation, differentiation, migration and apoptosis. Strikingly, alterations of connexin expression and trafficking are often, if not always, associated with human developmental diseases and carcinogenesis. In this respect, disrupted trafficking dynamics and aberrant intracytoplasmic localization of connexins are considered as typical features of functionality failure leading to the pathological state. Recent findings demonstrate that interactions of connexins with numerous protein partners, which take place throughout connexin trafficking, are essential for gap junction formation, membranous stabilization and degradation. In the present study, we give an overview of the physiological molecular machinery and of the specific interactions between connexins and their partners, which are involved in connexin trafficking, and we highlight their changes in pathological situations.  相似文献   

9.
Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.  相似文献   

10.

Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.

  相似文献   

11.
Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.  相似文献   

12.
Connexins, the integral membrane protein constituents of gap junctions, are degraded at a rate (t(12) = 1.5-5 h) much faster than most other cell surface proteins. Although the turnover of connexins has been shown to be sensitive to inhibitors of either the lysosome or of the proteasome, how connexins are targeted for degradation and whether this process can be regulated to affect intercellular communication is unknown. We show here that reducing connexin degradation with inhibitors of the proteasome (but not with lysosomal blockers) is associated with a striking increase in gap junction assembly and intercellular dye transfer in cells inefficient in both processes under basal conditions. The effect of proteasome inhibitors on wild-type connexin stability, assembly, and function was mimicked by treatment of assembly-inefficient cells with inhibitors of protein synthesis such as cycloheximide. Sensitivity of connexin degradation to cycloheximide, but not to proteasome inhibitors, was abolished when connexins were rendered structurally abnormal by perturbation of essential disulfide bonds or by mutation. Our findings provide the first evidence that intercellular communication can be up-regulated at the level of connexin turnover and that a short-lived protein may be required for conformationally mature connexins to become substrates of proteasomal degradation.  相似文献   

13.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells and are important in development and maintenance of cell homeostasis. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the cell cycle and the connexin “lifecycle”, such as trafficking, assembly/disassembly, degradation, as well as in the gating of “hemi” channels or intact gap junction channels. This review focuses on how phosphorylation can regulate the early stages of the connexin life cycle through assembly of functional gap junctional channels. The availability of sequences from the human genome databases has indicated that the number of connexins in the gene family is approximately 20, but we know mostly about how connexin43 (Cx43) is regulated. Recent technologies and investigations of interacting proteins have shown that activation of several kinases including protein kinase A, protein kinase C (PKC), p34cdc2/cyclin B kinase, casein kinase 1 (CK1), mitogen-activated protein kinase (MAPK) and pp60src kinase can lead to phosphorylation of the majority of the 21 serine and two of the tyrosine residues in the C-terminal region of Cx43. While many studies have correlated changes in kinase activity with changes in gap junctional communication, further research is needed to directly link specific phosphorylation events with changes in connexin oligomerization and gap junction assembly.  相似文献   

14.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

15.
Connexins (Cx), the protein subunits assembled into gap junction intercellular communication channels, are expressed in primary lymphoid organs and by circulating leukocytes. Human tonsil-derived T and B lymphocytes express Cx40 and 43; circulating human T, B, and NK lymphocytes express Cx43 and directly transfer between each other a low molecular dye indicative that functional gap junctions exist. We now identify specific properties in the immune system underwritten by gap junctions. Mixed lymphocytes cultured in the presence of two reagents with independent inhibitory action on gap junction communication, a connexin mimetic peptide and 18-alpha-glycyrrhetinic acid, markedly reduced the secretion of IgM, IgG, and IgA. The secretion of these immunoglobulins by purified B cells was also reduced by the two classes of gap junction inhibitors. Complex temporal inhibitory effects on the expression of mRNA encoding interleukins, especially IL-10, were also observed. The results indicate that intercellular signaling across gap junctions is an important component of the mechanisms underlying metabolic cooperation in the immune system.  相似文献   

16.
《FEBS letters》2014,588(8):1186-1192
Connexins, a family of transmembrane proteins, are components of both gap junction channels and hemichannels, which mediate the exchange of ions and small molecules between adjacent cells, and between the inside and outside of the cell, respectively. Substantial advancements have been made in the comprehension of the role of gap junctions and hemichannels in coordinating cellular events. In recent years, a plethora of studies demonstrate a role of connexin proteins in the regulation of tissue homeostasis that occurs independently of their channel activities. This is shown in the context of cell growth, adhesion, migration, apoptosis, and signaling. The major mechanisms of these channel-independent activities still remain to be discovered. In this review, we provide an updated overview on the current knowledge of gap junction- and hemichannel-independent functions of connexins, in particular, their effects on tumorigenesis, neurogenesis and disease development.  相似文献   

17.
18.
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

19.
Most cells communicate with their immediate neighbors through the exchange of cytosolic molecules such as ions, second messengers and small metabolites. This activity is made possible by clusters of intercellular channels called gap junctions, which connect adjacent cells. In terms of molecular architecture, intercellular channels consist of two channels, called connexons, which interact to span the plasma membranes of two adjacent cells and directly join the cytoplasm of one cell to another. Connexons are made of structural proteins named connexins, which compose a multigene family. Connexin channels participate in the regulation of signaling between developing and differentiated cell types, and recently there have been some unexpected findings. First, unique ionic- and size-selectivities are determined by each connexin; second, the establishment of intercellular communication is defined by the expression of compatible connexins; third, the discovery of connexin mutations associated with human diseases and the study of knockout mice have illustrated the vital role of cell-cell communication in a diverse array of tissue functions.  相似文献   

20.
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号