首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the lipid-attached doxyl electron paramagnetic resonance (EPR) spin label in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes has been studied by (1)H and (13)C magic angle spinning nuclear magnetic resonance relaxation measurements. The doxyl spin label was covalently attached to the 5th, 10th, and 16th carbons of the sn-2 stearic acid chain of a 1-palmitoyl-2-stearoyl-(5/10/16-doxyl)-sn-glycero-3-phosphocholine analog. Due to the unpaired electron of the spin label, (1)H and (13)C lipid relaxation rates are enhanced by paramagnetic relaxation. For all lipid segments the influence of paramagnetic relaxation is observed even at low probe concentrations. Paramagnetic relaxation rates provide a measure for the interaction strength between lipid segments and the doxyl group. Plotted along the membrane director a transverse distribution profile of the EPR probe is obtained. The chain-attached spin labels are broadly distributed in the membrane with a maximum at the approximate chain position of the probe. Both (1)H and (13)C relaxation measurements show these broad distributions of the doxyl group in the membrane indicating that (1)H spin diffusion does not influence the relaxation measurements. The broad distributions of the EPR label result from the high degree of mobility and structural heterogeneity in liquid-crystalline membranes. Knowing the distribution profiles of the EPR probes, their influence on relaxation behavior of membrane inserted peptide and protein segments can be studied by (13)C magic angle spinning nuclear magnetic resonance. As an example, the location of Ala residues positioned at three sites of the transmembrane WALP-16 peptide was investigated. All three doxyl-labeled phospholipid analogs induce paramagnetic relaxation of the respective Ala site. However, for well ordered secondary structures the strongest relaxation enhancement is observed for that doxyl group in the closest proximity to the respective Ala. Thus, this approach allows study of membrane insertion of protein segments with respect to the high molecular mobility in liquid-crystalline membranes.  相似文献   

2.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

3.
S-nitroso-N-acetylpenicillamine (SNAP) is a pharmacological agent with diverse biological effects that are mainly attributable to its favorable characteristics as a nitric oxide (NO)-evolving agent. It is found that SNAP incorporates readily into dimyristoyl phosphatidylcholine (DMPC) bilayer membranes; and an approximate penetration profile was obtained from the depth dependence of the perturbation that it exerts on spin-labeled lipid chains. The profile of SNAP locates it deep in the hydrophobic core of both fluid- and gel-phase membranes. The spin relaxation enhancement of spin-labeled phospholipids with nitroxide group located at different depths in DMPC membranes was determined for nitric oxide (NO) and molecular oxygen (O(2)), at close to atomic spatial resolution. The relaxation enhancement, which is proportional to the corresponding vertical membrane profile of the concentration-diffusion product, was measured in the gel and fluid phases of the lipid bilayer. No significant membrane penetration was observed in the gel phase for the two water-dissolved gases. In the fluid phase, the transmembrane profiles of NO and O(2) are similar and could be well described by a sigmoidal function with a maximum in the center of the bilayer, but that of NO is less steep and is shifted toward the center of the membrane, relative to that of O(2). These differences can be attributed mainly to the difference in hydrophobicity between the two gases and the presence of the donor in the NO experiments. The biological implications of the above results are discussed.  相似文献   

4.
S-nitroso-N-acetylpenicillamine (SNAP) is a pharmacological agent with diverse biological effects that are mainly attributable to its favorable characteristics as a nitric oxide (NO)-evolving agent. It is found that SNAP incorporates readily into dimyristoyl phosphatidylcholine (DMPC) bilayer membranes; and an approximate penetration profile was obtained from the depth dependence of the perturbation that it exerts on spin-labeled lipid chains. The profile of SNAP locates it deep in the hydrophobic core of both fluid- and gel-phase membranes. The spin relaxation enhancement of spin-labeled phospholipids with nitroxide group located at different depths in DMPC membranes was determined for nitric oxide (NO) and molecular oxygen (O2), at close to atomic spatial resolution. The relaxation enhancement, which is proportional to the corresponding vertical membrane profile of the concentration-diffusion product, was measured in the gel and fluid phases of the lipid bilayer. No significant membrane penetration was observed in the gel phase for the two water-dissolved gases. In the fluid phase, the transmembrane profiles of NO and O2 are similar and could be well described by a sigmoidal function with a maximum in the center of the bilayer, but that of NO is less steep and is shifted toward the center of the membrane, relative to that of O2. These differences can be attributed mainly to the difference in hydrophobicity between the two gases and the presence of the donor in the NO experiments. The biological implications of the above results are discussed.  相似文献   

5.
Two spin-labelled derivatives of the 5-(2-indolyl)-2,4-pentadienoyl class of inhibitors of the vacuolar ATPase have been synthesised and their EPR properties characterised in phospholipid membranes. One spin-labelled inhibitor is the amide derivative of pentadienic acid and 4-amino-TEMPO (INDOL6), and the other is the 3-hydroxymethyl-PROXYL ester (INDOL5). The response of the EPR spectra to the chain-melting transition of dimyristoyl phosphatidylcholine (DMPC) bilayers demonstrates that both derivatives incorporate in phospholipid membranes. The axially anisotropic EPR spectra of INDOL6 in fluid DMPC membranes indicate that the indolyl-pentadienoyl inhibitors intercalate between the lipid chains, in the membrane. INDOL5, designed to possess additional internal segmental mobility, exhibits more nearly isotropic motion of the spin-label moiety in fluid membranes than does INDOL6. The EPR characteristics of INDOL5 are therefore well suited to detecting specific ligand-protein interactions. Progressive saturation EPR experiments with polar and hydrophobic relaxation agents (aqueous Ni2+ and oxygen) show that the nitroxide group is buried in the membrane, with the indole moiety providing the anchor at the membrane polar-apolar interface. Rates of spin-label reduction by externally added ascorbate confirm this assignment. These two spin-labelled derivatives provide complementary EPR probes of the lipid environment (INDOL6), and of ligand-protein interactions (INDOL5), for this class of V-ATPase inhibitor.  相似文献   

6.
Profiles of polarity across biological membranes are essential determinants of the cellular permeability barrier and of the stability of transmembrane proteins. High-field electron paramagnetic resonance of systematically spin-labeled lipid chains is used here to determine the polarity profiles of cholesterol-containing phospholipid membranes. The polarity dependence of the g(xx)-tensor element is opposite to the dependence on chain dynamics, and additionally has enhanced sensitivity to hydrogen bonding. Both features make high-field measurements superior to conventional determinations of local polarity from spin-label hyperfine couplings. The profile of g(xx) in dimyristoyl phosphatidylcholine membranes with 5 or 40 mol% cholesterol is established with eleven positional isomers of phosphatidylcholine, spin labeled at positions n = 4-14 in the sn-2 chain. A sigmoidal barrier, centered about chain position n(o) approximately 8, mirrors the corresponding sigmoidal trough obtained from the spin-label hyperfine coupling, A(zz). For the different positions, n, it is found that partial differential g(xx)/ partial differential A(zz) = -2.4 T(-1), a high value that is characteristic of hydrogen-bonded spin labels. This demonstrates that the transmembrane polarity profile registered by spin labels corresponds to water penetration into the membrane. Inhomogeneous broadening of the g(xx)-spectral feature demonstrates heterogeneities of the water distribution in the regions of higher intramembrane polarity defined by n < 8. In the transition region between high- and low-polarity regions (n approximately 8), the g(xx)-feature consists of two components characteristic of coexisting hydrated and nonhydrated states.  相似文献   

7.
Summary Permeabilities for an homologous series of amine nitroxide spin probes were measured in liposomes of varying composition by an electron paramagnetic resonance (EPR) method. Results show that the rate-limiting step in permeation is not adsorption/desorption at the aqueous/membrane interface for two probes in phosphatidylcholine/phosphatidic acid liposomes and for one probe in phosphatidylcholine/cholesterol/phosphatidic acid liposomes. Accordingly, we interpret observed selectivity patterns for the entire series of probes in liposomes and red cells in terms of the properties of the bilayer interior.Results are inconsistent with simple applications of either free volume or hydrocarbon sheet models of nonelectrolyte permeation. In the former case, it was found that liposomes do not select against these probes on the basis of molecular volume. In the latter case, probe permeabilities are all much lower than would be predicted for a sheet of bulk hydrocarbon and the polarity of the rate-limiting region is shown to be greater than bulk hydrocarbon. Together with the results of previous studies of spin-labeled solutes in membranes, as well as studies of lipid dynamics in membranes, these latter results suggest that the rate-limiting region in nonelectrolyte permeation is not in the center of the bilayer, but in the relatively ordered acyl chain segments near the glycerol backbone.  相似文献   

8.
Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid–protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10× slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments.  相似文献   

9.
Interaction of the cell‐penetrating peptide (CPP) cysteine‐transportan (Cys‐TP) with model lipid membranes was examined by spin‐label electron paramagnetic resonance (EPR). Membranes were labeled with lipophilic spin probes and the influence of Cys‐TP on membrane structure was studied. The influence of Cys‐TP on membrane permeability was monitored by the reduction of a liposome‐trapped water‐soluble spin probe. Cys‐TP caused lipid ordering in membranes prepared from pure dimyristoylphosphatidylcholine (DMPC) and in DMPC membranes with moderate cholesterol concentration. In addition, Cys‐TP caused a large increase in permeation of DMPC membranes. In contrast, with high cholesterol content, at which model lipid membranes are in the so‐called liquid‐ordered phase, no effect of Cys‐TP was observed, either on the membrane structure or on the membrane permeability. The interaction between Cys‐TP and the lipid membrane therefore depends on the lipid phase. This could be of great importance for understanding of the CPP–lipid interaction in laterally heterogeneous membranes, while it implies that the CPP–lipid interaction can be different at different points along the membrane. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The interaction of lipids, spin-labeled at different positions in the sn-2 chain, with cytochrome c oxidase reconstituted in gel-phase membranes of dimyristoylphosphatidylglycerol has been studied by electron paramagnetic resonance (EPR) spectroscopy. Nonlinear EPR methods, both saturation transfer EPR and progressive saturation EPR, were used. Interaction with the protein largely removes the flexibility gradient of the lipid chains in gel-phase membranes. The rotational mobility of the chain segments is reduced, relative to that for gel-phase lipids, by the intramembranous interaction with cytochrome c oxidase. This holds for all positions of chain labeling, but the relative effect is greater for chain segments closer to the terminal methyl ends. Modification of the paramagnetic metal-ion centers in the protein by binding azide has a pronounced effect on the spin-lattice relaxation of the lipid spin labels. This demonstrates that the centers modified are sufficiently close to the first-shell lipids to give appreciable dipolar interactions and that their vertical location in the membrane is closer to the 5-position than to the 14-position of the lipid chains.  相似文献   

11.
12.
The physical properties of a membrane derived from the total lipids of a calf lens were investigated using EPR spin labeling and were compared with the properties of membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Conventional EPR spectra and saturation-recovery curves show that spin labels detect a single homogenous environment in all three membranes. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are practically identical in lens lipid and POPC/Chol membranes, but differ drastically from profiles in pure POPC membranes. In both lens lipid and POPC/Chol membranes, the lipids are strongly immobilized at all depths, which is in contrast to the high fluidity of the POPC membrane. Hydrophobicity and oxygen transport parameter profiles in lens lipid and POPC/Chol membranes have a rectangular shape with an abrupt change between the C9 and C10 positions, which is approximately where the steroid ring structure of cholesterol reaches into the membrane. At this position, hydrophobicity increases from the level of methanol to the level of hexane, and the oxygen transport parameter increases by a factor of 2-3. These profiles in POPC membranes are bell-shaped. It is concluded that the high level of cholesterol in lens lipids makes the membrane stable, immobile, and impermeable to both polar and nonpolar molecules.  相似文献   

13.
The physical properties of a membrane derived from the total lipids of a calf lens were investigated using EPR spin labeling and were compared with the properties of membranes made of an equimolar 1-palmitoyl-2-oleoylphosphatidylcholine/cholesterol (POPC/Chol) mixture and of pure POPC. Conventional EPR spectra and saturation-recovery curves show that spin labels detect a single homogenous environment in all three membranes. Profiles of the order parameter, hydrophobicity, and oxygen transport parameter are practically identical in lens lipid and POPC/Chol membranes, but differ drastically from profiles in pure POPC membranes. In both lens lipid and POPC/Chol membranes, the lipids are strongly immobilized at all depths, which is in contrast to the high fluidity of the POPC membrane. Hydrophobicity and oxygen transport parameter profiles in lens lipid and POPC/Chol membranes have a rectangular shape with an abrupt change between the C9 and C10 positions, which is approximately where the steroid ring structure of cholesterol reaches into the membrane. At this position, hydrophobicity increases from the level of methanol to the level of hexane, and the oxygen transport parameter increases by a factor of 2-3. These profiles in POPC membranes are bell-shaped. It is concluded that the high level of cholesterol in lens lipids makes the membrane stable, immobile, and impermeable to both polar and nonpolar molecules.  相似文献   

14.
The rate of reaction of the ascorbate ion with the nitroxide group of spin probes intercalated in lipid bilayers has been studied to examine the mechanism of transport of solutes across membranes. The loss of electron spin resonance (ESR) signal follows first-order kinetics. For a given bilayer system, the half-time of the process increases with the distance of the reacting group from the aqueous interface, according to an approximately linear permeation profile. The dependence on phospholipid headgroup is that which would be predicted from the net charge; addition of negatively charged headgroups increases the half-time of reaction, and positively charged headgroups decrease it, compared with bilayers having no net charge. Addition of cholesterol, which is known to decrease the fluidity of the hydrocarbon core of the bilayer, is found to increase the half-time of reaction. The results have been analyzed in terms of a partition-diffusion mechanism. It is suggested that the rate-limiting step for partitioning the solute into the bilayer might be removal of water of hydration. Cholesterol increases the activation energy, most probably by increasing the height of the barriers to diffusion. Quantitation of the changes in reaction rates gives an estimate of the change in bilayer surface potential on changing the headgroup composition. Examination of the permeation profile supports a diffusive mechanism, from which it can be estimated that the diffusion coefficient is approximately halved on adding 35 mol% cholesterol to egg lecithin bilayers.  相似文献   

15.
Lipid protein interactions in biological membranes differ markedly depending on whether the protein is intrinsic or extrinsic. These interactions are studied using lipid spin labels diffused into model systems consisting of phospholipid bilayers and a specific protein. Recently, an intrinsic protein complex, cytochrome oxidase, was examined and the data suggest there is a boundary layer of immobilized lipid between the hydrophobic protein surfaces and adjacent fluid bilayer regions. In the present study, a typical extrinsic protein, cytochrome c, was complexed with a cardiolipin/lecithin (1:4 by weight) mixture. The phospholipids in the presence and absence of cytochrome c exhibit typical bilayer behavior as jedged by four spin-labeling criteria: fluidity gradient, spectral anisotropy of oriented bilayers, response to hydration and the polarity profile. Any effects of cytochrome c on the ESR spectra of lipid spin labels are small, in contrast to the effects of intrinsic proteins. These data are consistent with electrostatic binding of cytochrome c to the charged groups of the phospholipids, and indicate that the presence of extrinsic proteins will not interfere with measurements of boundary lipid in intact biological membranes.  相似文献   

16.
Megli FM  Russo L  Sabatini K 《FEBS letters》2005,579(21):4577-4584
The thermal behaviour of phospholipid multilamellar vesicles (MLV) made of various molar percentages of DPPC and LPPC, containing also oxidized LPPC (LPPCox), was studied by use of EPR spectroscopy and n-DSPC spin label in order to determine variations in the membrane fluidity brought about by lipid oxidation. Experimental variables were temperature, ranging from 4 to 44 degrees C, and molar percentage composition of DPPC/LPPC/LPPCox ternary mixture. We found that the presence of LPPCox in a percentage higher than both normal phospholipids' heavily hindered membrane formation, while lower percentage of the oxidized lipid with higher DPPC percentages yielded two-components EPR spectra, showing the presence of two different fluidity domains, indicative of membrane phase separation. When LPPC was the dominant lipid in the ternary mixture, simple EPR spectra were observed, indicating homogeneity of MLV membranes. Phase separation observed in the presence of LPPCox was better visible at lower temperature (12 degrees C or less), and almost disappeared with increasing temperature (36 degrees C or more). Furthermore, the correlation time of 16-DSPC in ternary mixture MLVs with higher LPPC percentage (homogeneous membranes) was not affected by the presence of LPPCox, while it normally increased upon DPPC percentage increase, as readily calculated from the EPR spectra featuring simple bands at 24 degrees C. It is concluded that oxidized lipid induces phase separation in more rigid DPPC-rich membranes, while leaving fluidity unaffected in more fluid LPPC-rich membranes, and at higher temperature.  相似文献   

17.
Summary Permeabilities for a homologous series of amine and carboxylate nitroxide spin probes were measured in human red blood cells by an electron paramagnetic resonance (EPR) method. Permeabilities determined in this study are much lower than would be predicted for a sheet of bulk hydrocarbon and the polarity of the rate-limiting region is shown to be greater than bulk hydrocarbon. This suggests that the rate-limiting region for permeation of these nonelectrolytes is somewhere in the membrane periphery rather than in the center of the membrane. The red cell membrane does not discriminate between these probes on the basis of molecular volume, as might be predicted by a simple free-volume theory of membrane permeation.  相似文献   

18.
Cellular respiration, mediated by the passive diffusion of oxygen across lipid membranes, is key to many basic cellular processes. In this work, we report the detailed distribution of oxygen across lipid bilayers and examine the thermodynamics of oxygen partitioning via NMR studies of lipids in a small unilamellar vesicle (SUV) morphology. Dissolved oxygen gives rise to paramagnetic chemical shift perturbations and relaxation rate enhancements, both of which report on local oxygen concentration. From SUVs containing the phospholipid sn-2-perdeuterio-1-myristelaidoyl, 2-myristoyl-sn-glycero-3-phosphocholine (MLMPC), an analogue of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), we deduced the complete trans-bilayer oxygen distribution by measuring (13)C paramagnetic chemical shifts perturbations for 18 different sites on MLMPC arising from oxygen at a partial pressure of 30 bar. The overall oxygen solubility at 45 °C spans a factor of 7 between the bulk water (23.7 mM) and the bilayer center (170 mM) and is lowest in the vicinity of the phosphocholine headgroup, suggesting that oxygen diffusion across the glycerol backbone should be the rate-limiting step in diffusion-mediated passive transport of oxygen across the lipid bilayer. Lowering of the temperature from 45 to 25 °C gave rise to a slight decrease of the oxygen solubility within the hydrocarbon interior of the membrane. An analysis of the temperature dependence of the oxygen solubility profile, as measured by (1)H paramagnetic relaxation rate enhancements, reveals that oxygen partitioning into the bilayer is entropically favored (ΔS° = 54 ± 3 J K(-1) mol(-1)) and must overcome an enthalpic barrier (ΔH° = 12.0 ± 0.9 kJ mol(-1)).  相似文献   

19.
The intramembrane locations of several spin labeled probes in small egg phosphatidylcholine (egg PC) vesicles were determined from the enhancement of the 13C nuclear spin lattice relaxation of the membrane phospholipid. Electron paramagnetic resonance (EPR) spectroscopy was also used to measure the relative environmental polarities of the spin labels in egg PC vesicles, ethanol and aqueous solution. The binding location of the spin label group was determined for a pair of hydrophobic ion spin labels, a pair of long chain amphiphiles, and three stearates containing doxyl groups at the 5, 10 and 16 positions. The nuclear relaxation results indicate that the spin label groups on the stearates are located nearer to the membrane exterior than the analogous positions of the unlabeled phospholipid acyl chains. In addition, the spin label groups of the hydrophobic ions and long chain amphiphiles are located near the acyl chain methylene immediately adjacent to the carboxyl group. The relative polarities, determined by the EPR technique, are consistent with the nuclear relaxation results. This information, when combined with information on their electrical properties, allows for an assessment of the conformation and position of these voltage sensitive probes in membranes.  相似文献   

20.
We use electron paramagnetic resonance (EPR) with liposoluble spin labels in order to study the lipid structures obtained after Triton X-100 extraction of erythrocyte membranes. The apparent order profile in these detergent resistant membranes (DRM) is very similar to that of the parent membrane, although with higher absolute values, consistent with a liquid-ordered state. DRM could also be obtained from erythrocytes previously depleted in a 40% of their membrane cholesterol, in apparent opposition to the phenomenon of raft disruption reported by other authors. However, the protein profile of these samples showed important differences with that of DRM from untreated cells. The analysis of our results suggests that the effect of Triton X-100 on cholesterol depleted erythrocytes is limited to the solubilization of raft proteins, without disrupting the lipid matrix of DRM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号