首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report ELISA studies of the glycosaminoglycan binding properties of recombinant human glial cell line-derived neurotrophic factor (GDNF). We demonstrate relatively high affinity binding as soluble heparin competes with an IC50 of 0.1 micro g/ml. The binding of GDNF to heparin is particularly dependent on the presence of 2-O-sulfate groups. Highly sulfated heparan sulfate is also an effective competitor for GDNF binding. We also show that heparin at low concentrations protects GDNF from proteolytic modification by an endoprotease and also promotes the binding of GDNF to its receptor polypeptide, GFRalpha1. In both of these actions, 2-O-desulfated heparin is less effective. Considered overall, these findings provide strong support for a hypothesis that the bioactivity of GDNF during prenatal development is essentially dependent on the binding of this growth factor to 2-O-sulfate-rich heparin-related glycosaminoglycan.  相似文献   

2.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   

3.
Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFRalpha3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.  相似文献   

4.
The structural biology of growth factor receptor activation   总被引:3,自引:0,他引:3  
Stimulation of cells by growth factors triggers cascades of signalling that result in cellular responses such as growth, differentiation, migration and survival. Many growth factors signal through receptor tyrosine kinases, leading to dimerization, trans-phosphorylation and activation of tyrosine kinases that phosphorylate components further downstream of the signal transduction cascade. Using insulin-like growth factor, nerve growth factor, hepatocyte growth factor and fibroblast growth factor as examples, we show that the globular architecture of the growth factors is essential for receptor binding. We describe how nerve growth factor (NGF) is a symmetrical dimer that binds four storage proteins (two -NGF and two γ-NGF) to give a symmetrical hetero-hexameric 7SNGF organised around the β-NGF dimer. It binds the extracellular domains of two receptor molecules in a similar way, so dimerising the receptor. Hepatocyte growth factor/scatter factor (HGF/SF) probably binds its receptor as a dimer stabilised by interactions with heparan sulfate, and fibroblast growth factor (FGF) binds its receptor as a dimer cross-linked by heparan sulfate. Surprisingly, insulin and insulin-like growth factor (IGF) bind in the monomeric form to receptors that are already covalent dimers. We propose that, in general, weak binary interactions between growth factor and individual domains of receptors are enhanced by cooperative interactions with further receptor domains, and sometimes other components like heparan, to give rise to specific multi-protein/domain complexes.  相似文献   

5.
Full-length hepatocyte growth factor/scatter factor interacts with both heparan and dermatan sulfates and is critically dependent upon them as cofactors for activation of the tyrosine kinase receptor Met. Two C-terminally truncated variants (NK1 and NK2) of this growth factor also occur naturally. Their glycosaminoglycan binding properties are not clear. We have undertaken a comparative study of the heparan/dermatan sulfate binding characteristics of all three proteins. This has entailed the development of a modified gel mobility shift assay, utilizing fluorescence end-tagged oligosaccharides, that is also widely applicable to the analysis of many glycosaminoglycan-protein interactions. Using this we have shown that all three hepatocyte growth factor/scatter factor variants share identical heparan/dermatan sulfate binding properties and that both glycosaminoglycans occupy the same binding site. The minimal size of the oligosaccharide that binds with high affinity in all cases is a tetrasaccharide from heparan sulfate but a hexasaccharide from dermatan sulfate. These findings demonstrate that functional glycosaminoglycan binding is restricted to a binding site situated solely within the small N-terminal domain. The same minimal size fractions are also able to promote hepatocyte growth factor/scatter factor-mediated activation of Met and consequent downstream signaling in the glycosaminoglycan-deficient Chinese hamster ovary pgsA-745 cells. A covalent complex of heparan sulfate tetrasaccharide with monovalent growth factor is also active. The binding and activity of tetrasaccharides put constraints upon the possible interactions and molecular geometry within the ternary signaling complex.  相似文献   

6.
The glial cell line-derived neurotrophic factor (GDNF) family coreceptor alpha1 (GFRalpha1) is a critical component of the RET receptor kinase signal-transducing complex. The activity of this multicomponent receptor is stimulated by the glial cell line-derived neurotrophic factor (GDNF) and is involved in neuronal cells survival and kidney development. GFRalpha1 pre-mRNA is alternatively spliced and produces two isoforms: GFRalpha1a, which includes the exon 5; and GFRalpha1b, which excludes it. Here we show that the Gfralpha1a isoform is predominantly expressed in neuronal tissues and in PC12 cells differentiated toward a neuronal phenotype. GFRalpha1 splicing is also regulated during kidney development, GFRalpha1a is the minor isoform before birth and then rapidly becomes the major form after birth. We established cell lines expressing either GFRalpha1 isoforms and demonstrated that the GFRalpha1b isoform binds GDNF more efficiently than GFRalpha1a. Consistently, GFRalpha1b promotes a stronger RET phosphorylation than GFRalpha1a. These results indicate that specific inclusion of the GFRalpha1 exon 5 in neuronal tissues or during kidney development may alter the binding properties of GDNF to GFRalpha1, and thus could constitute an additional regulatory mechanism of the RET signaling pathway.  相似文献   

7.
GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor beta domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pairs of other basic residues with alanine had no effect. The heparin-binding sequence is quite distinct from the binding site for the high affinity GDNF polypeptide receptor, GFRalpha1 (GDNF family receptor alpha1), and heparin-bound GDNF is able to bind GFRalpha1 simultaneously. The heparin-binding sequence of GDNF is dispensable both for GFRalpha1 binding, and for activity for in vitro neurite outgrowth assay. Surprisingly, the observed inhibition of GDNF bioactivity with the wild-type protein in this assay was still found with the deletion mutant lacking the heparin-binding sequence. Heparin neither inhibits nor potentiates GDNF-GFRalpha1 interaction, and the extracellular domain of GFRalpha1 does not bind to heparin itself, precluding heparin cross-bridging of cytokine and receptor polypeptides. The role of heparin and heparan sulfate in GDNF signalling remains unclear, but the present study indicates that it does not occur in the first step of the pathway, namely GDNF-GFRalpha1 engagement.  相似文献   

8.
Hepatocyte growth factor (HGF)/scatter factor (SF) is a unique growth factor, in that it binds both heparan sulphate (HS) and dermatan sulphate (DS). The sequences in HS and DS that specifically interact with and modulate HGF/SF activity have not yet been fully identified. Ascidian DS, which uniquely possesses O-sulphation at C-6 (and not C-4) of its N -acetylgalactosamine unit, was analysed for HGF/SF-binding activity in the biosensor. The kinetic analysis revealed a strong, biologically relevant interaction with an equilibrium dissociation constant ( K (d)) of approx. 1 nM. An Erk activation assay also demonstrated stimulation of the MAP kinase pathway downstream of the Met receptor following addition of both HGF/SF and ascidian DS to the glycosaminoglycan-deficient CHO-745 mutant cell line. Furthermore, the activation of Met and the MAP kinase pathway by HGF/SF and ascidian DS leads to a cellular response in the form of migration.  相似文献   

9.
Glypican-1 is a member of a family of glycosylphosphatidylinositol anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentiation. The 165-amino acid form of vascular endothelial growth factor (VEGF165) is a mitogen for endothelial cells and a potent angiogenic factor in vivo. Heparin binds to VEGF165 and enhances its binding to VEGF receptors. However, native HSPGs that bind VEGF165 and modulate its receptor binding have not been identified. Among the glypicans, glypican-1 is the only member that is expressed in the vascular system. We have therefore examined whether glypican-1 can interact with VEGF165. Glypican-1 from rat myoblasts binds specifically to VEGF165 but not to VEGF121. The binding has an apparent dissociation constant of 3 x 10(-10) M. The binding of glypican-1 to VEGF165 is mediated by the heparan sulfate chains of glypican-1, because heparinase treatment abolishes this interaction. Only an excess of heparin or heparan sulfates but not other types of glycosaminoglycans inhibited this interaction. VEGF165 interacts specifically not only with rat myoblast glypican-1 but also with human endothelial cell-derived glypican-1. The binding of 125I-VEGF165 to heparinase-treated human vascular endothelial cells is reduced following heparinase treatment, and addition of glypican-1 restores the binding. Glypican-1 also potentiates the binding of 125I-VEGF165 to a soluble extracellular domain of the VEGF receptor KDR/flk-1. Furthermore, we show that glypican-1 acts as an extracellular chaperone that can restore the receptor binding ability of VEGF165, which has been damaged by oxidation. Taken together, these results suggest that glypican-1 may play an important role in the control of angiogenesis by regulating the activity of VEGF165, a regulation that may be critical under conditions such as wound repair, in which oxidizing agents that can impair the activity of VEGF are produced, and in situations were the concentrations of active VEGF are limiting.  相似文献   

10.
11.
Mammalian heparanase: what is the message?   总被引:3,自引:0,他引:3  
  相似文献   

12.
Division abnormally delayed (Dally) is one of two glycosylphosphatidylinositol (GPI)-linked heparan sulfate proteoglycans in Drosophila. Numerous studies have shown that it influences Decapentaplegic (Dpp) and Wingless signaling. It has been generally assumed that Dally affects signaling by directly interacting with these growth factors, primarily through its heparan sulfate (HS) chains. To understand the functional contributions of HS chains and protein core we have (1) assessed the growth factor binding properties of purified Dally using surface plasmon resonance, (2) generated a form of Dally that is not HS modified and evaluated its signaling capacity in vivo. Purified Dally binds directly to FGF2, FGF10, and the functional Dpp homolog BMP4. FGF binding is abolished by preincubation with HS, but BMP4 association is partially HS-resistant, suggesting the Dally protein core contributes to binding. Cell binding and co-immunoprecipitation studies suggest that non-HS-modified Dally retains some ability to bind Dpp or BMP4. Expression of HS-deficient Dally in vivo showed it does not promote signaling as well as wild-type Dally, yet it can rescue several dally mutant phenotypes. These data reveal that heparan sulfate modification of Dally is not required for all in vivo activities and that significant functional capacity resides in the protein core.  相似文献   

13.
A heparin-binding protein was isolated from bovine uteri and purified to homogeneity. This protein appears as a double band of approx. 78 kDa in SDS/polyacrylamide-gel electrophoresis and has an isoelectric point of 5.2. The binding of heparin to this protein is saturable. No other glycosaminoglycan from mammalian tissue, such as hyaluronic acid, chondroitin sulphate, dermatan sulphate or keratan sulphate, binds to the 78 kDa protein. Dextran sulphate binds in a non-saturable fashion. Certain heparan sulphate polysaccharide structures are required for binding to the 78 kDa protein. Some proteoheparan sulphates, such as endothelial cell-surface proteoheparan sulphate, show only weak interaction with the 78 kDa protein in contrast with a basement-membrane proteoheparan sulphate from HR-9 cells. Antibodies against the 78 kDa protein inhibit binding of proteoheparan [35S]sulphate from basement membranes to smooth-muscle cells. Conventional antibodies, Fab fragments and some monoclonal antibodies, inhibit smooth-muscle cell proliferation in a similar range as that observed for heparin. The protein was detected in a variety of tissues and cells but not in blood cells. A possible role of this protein as a receptor for heparin or heparan sulphate and its function in the control of the arterial wall structure are discussed.  相似文献   

14.
Glial cell line-derived neurotrophic factor (GDNF) family, consisting of GDNF, neurturin, artemin and persephin are distant members of the transforming growth factor-beta (TGF-beta) superfamily. Unlike other members of the TGF-beta superfamily, which signal through the receptor serine-threonine kinases, GDNF family ligands activate intracellular signalling cascades via the receptor tyrosine kinase Ret. GDNF family ligands first bind to the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor alpha (GFRalpha) and then the GDNF family ligand-GFRalpha complex binds to and stimulates autophosphorylation of Ret. Alternatively, a preassociated complex between GFRalpha and Ret could form the binding site for the GDNF family ligand. GFRalpha1, GFRalpha2, GFRalpha3 and GFRalpha4 are the physiological coreceptors for GDNF, neurturin, artemin and persephin, respectively. Although all GDNF family ligands signal via activated Ret, GDNF can signal also via GFRalpha1 in the absence of Ret. GPI-anchored GFRalpha receptors are localized in plasma membrane to lipid rafts. GDNF binding to GFRalpha1 also recruits Ret to the lipid rafts and triggers association with Src, which is required for effective downstream signalling, leading to differentiation and neuronal survival. GDNF family ligands are potent survival factors for midbrain dopamine neurons, motoneurons, noradrenergic neurons, as well as for sympathetic, parasympathetic and sensory neurons. However, for most neuronal populations, except for motoneurons, TGF-beta is required as a cofactor for GDNF family ligand signalling. Because GDNF and neurturin can rescue dopamine neurons in the animal models of Parkinson disease, as well as motoneurons in vivo, hopes have been raised that GDNF family ligands may be new drugs for the treatment of neurodegenerative diseases. GDNF also has distinct functions outside the nervous system, promoting ureteric branching in kidney development and regulating spermatogenesis.  相似文献   

15.
In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1β/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo.  相似文献   

16.
17.
In animal models, kidney formation is known to be controlled by the proteins RET, GDNF, and GFRA1; however, no human studies to date have shown an association between abnormal kidney development and mutation of these genes. We hypothesized that stillborn fetuses with congenital renal agenesis or severe dysplasia would possess mutations in RET, GDNF, or GFRA1. We assayed for mutations in these genes in 33 stillborn fetuses that had bilateral or unilateral renal agenesis (29 subjects) or severe congenital renal dysplasia (4 subjects). Mutations in RET were found in 7 of 19 fetuses with bilateral renal agenesis (37%) and 2 of 10 fetuses (20%) with unilateral agenesis. In two fetuses, there were two different RET mutations found, and a total of ten different sequence variations were identified. We also investigated whether these mutations affected RET activation; in each case, RET phosphorylation was either absent or constitutively activated. A GNDF mutation was identified in only one fetus with unilateral agenesis; this subject also had two RET mutations. No GFRA1 mutations were seen in any fetuses. These data suggest that in humans, mutations in RET and GDNF may contribute significantly to abnormal kidney development.  相似文献   

18.
M F Scully  V Ellis  V V Kakkar 《FEBS letters》1988,241(1-2):11-14
Heparan sulphate with no affinity for antithrombin III (ATIII) was observed to cause acceleration of the factor Xa:ATIII interaction by 1100-fold (k2, 7 X 10(7) M-1.min-1) and the prothrombinase:ATIII interaction by 2900-fold (k2, 2.5 X 10(7) M-1.min-1). Although high-affinity heparan sulphate catalyzed higher acceleration and at lower concentration, in natural mixtures of the two forms the activity of the no affinity form predominated. Heparan sulphate had no significant effect on the thrombin:ATIII interaction but inhibited its potentiation by heparin (Kd 0.3 microM). From the estimated concentration of heparan sulphate on the endothelial cell surface it is proposed that the non-thrombogenic property of blood vessels is due to the acceleration of the factor Xa or prothrombinase:ATIII interaction by the greater mass of surface-bound heparan sulphate rather than by the much smaller proportion of heparin-like molecules (with high affinity for antithrombin III) which may be present.  相似文献   

19.
HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo   总被引:1,自引:0,他引:1  
To participate as co-receptor in growth factor signaling, heparan sulfate must have specific structural features. Recent studies show that when the levels of 6-O-sulfation of heparan sulfate are diminished by the activity of extracellular heparan sulfate 6-O-endosulfatases (Sulfs), fibroblast growth factor 2-, heparin binding epidermal growth factor-, and hepatocyte growth factor-mediated signaling are attenuated. This represents a novel mechanism for regulating cell growth, particularly within the tumor microenvironment where the Sulfs are known to be misregulated. To directly test the role of Sulfs in tumor growth control in vivo, a human myeloma cell line was transfected with cDNAs encoding either of the two known human endosulfatases, HSulf-1 or HSulf-2. When implanted into severe combined immunodeficient (SCID) mice, the growth of these tumors was dramatically reduced on the order of 5- to 10-fold as compared with controls. In addition to an inhibition of tumor growth, these studies revealed the following. (i) HSulf-1 and HSulf-2 have similar functions in vivo. (ii) The extracellular activity of Sulfs is restricted to the local tumor cell surface. (iii) The Sulfs promote a marked increase in extracellular matrix deposition within tumors that may, along with attenuated growth factor signaling, contribute to the reduction in tumor growth. These findings demonstrate that dynamic regulation of heparan sulfate structure by Sulfs present within the tumor microenvironment can have a dramatic impact on the growth and progression of malignant cells in vivo.  相似文献   

20.
Glial cell line-derived neurotrophic factor (GDNF) is a growth factor promoting the survival of several neuronal populations in the central, peripheral and autonomous nervous system. Outside the nervous system, GDNF functions as a morphogen in kidney development and regulates spermatogonial differentiation. GDNF exerts its roles by binding to glial cell line-derived neurotrophic factor receptor (GFR) a1, which forms a heterotetramic complex with rearranged during transfection (RET) proto-oncogene product, a tyrosine kinase receptor. In this study we report the presence of GDNF-, RET- and GFRa1-like immunoreactivity in the pancreas of juvenile trout. GDNF immunoreactivity was observed in the islet cells, while GFRa1- and RET- immunoreactivity was observed in the exocrine portion. These findings suggest a paracrine role of GDNF towards exocrine cells showing GDNF receptors GFRa1 and RET. The relationship could reflect physiological interactions, as previously indicated in mammalian pancreas, and/or a trophic role by endocrine cells on exocrine parenchyma, which shows a conspicuous increase during animal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号