首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NADH-specific and NAD(P)H-bispecific nitrate reductase genes from barley have been cloned and sequenced. To determine if the Nar7 locus encodes the NAD(P)H-bispecific nitrate reductase structural gene, a cross was made between a wild-type cultivar, Morex (Nar7 Nar7), and Az70 (nar7w nar7w), a mutant from the cultivar Steptoe that is deficient in NAD(P)H-bispecific nitrate reductase activity. A probe specific to the NAD(P)H-bispecific nitrate reductase structural gene detected restriction fragment length polymorphism between the parents. This probe was used to classify selected F2 progeny for restriction fragment length genotype. All the NAD(P)H nitrate reductase deficient F2 progeny (24/101) possessed the Az70 restriction fragment genotype. The absence of recombination between the NAD(P)H-bispecific nitrate reductase deficient genotype and the NAD(P)H-bispecific nitrate reductase restriction fragment length genotype indicates that the two traits are closely associated in inheritance and that Nar7 is probably the NAD(P)H-bispecific nitrate reductase structural gene.  相似文献   

2.
Involvement of nitrate reductase and pyoverdine in the competitiveness of the biocontrol strain Pseudomonas fluorescens C7R12 was determined, under gnotobiotic conditions, in two soil compartments (bulk and rhizosphere soil), with the soil being kept at two different values of matric potential (-1 and -10 kPa). Three mutants affected in the synthesis of either the nitrate reductase (Nar(-)), the pyoverdine (Pvd(-)), or both (Nar(-) Pvd(-)) were used. The Nar(-) and Nar(-) Pvd(-) mutants were obtained by site-directed mutagenesis of the wild-type strain and of the Pvd(-) mutant, respectively. The selective advantage given by nitrate reductase and pyoverdine to the wild-type strain was assessed by measuring the dynamic of each mutant-to-total-inoculant (wild-type strain plus mutant) ratio. All three mutants showed a lower competitiveness than the wild-type strain, indicating that both nitrate reductase and pyoverdine are involved in the fitness of P. fluorescens C7R12. The double mutant presented the lowest competitiveness. Overall, the competitive advantages given to C7R12 by nitrate reductase and pyoverdine were similar. However, the selective advantage given by nitrate reductase was more strongly expressed under conditions of lower aeration (-1 kPa). In contrast, the selective advantage given by nitrate reductase and pyoverdine did not differ in bulk and rhizosphere soil, indicating that these bacterial traits are not specifically involved in the rhizosphere competence but rather in the saprophytic ability of C7R12 in soil environments.  相似文献   

3.
4.
Four decades of soybean [Glycine max (L.) Merr.] cultivation in South Africa has resulted in the establishment of populations of bradyrhizobia against which the recently introduced inoculant strain CB 1809 must compete. Serological and DNA fingerprinting methods were used to study the diversity of nodule isolates from soils at Bergville, Koedoeskop and Morgenzon. Dominant serogroups included Bradyrhizobium elkanii serotype 76 at Bergville (67%), Bradyrhizobium japonicum serotype 123 at Morgenzon (81%) and B. japonicum serotype 135 at Koedoeskop (100%). Their origin is unknown as they do not correspond in serotype to strains used in previous inoculants. A small percentage of isolates from Bergville (13%) and Morgenzon (16%) were serologically homologous to strain WB 1 (serotype 31/76), applied for two decades before CB 1809 (serotype 122). Nitrogen-fixing effectiveness of CB 1809 was superior to 60% of the isolates tested from Bergville and Morgenzon, but similar to 73% of the Koedoeskop isolates. Seed and liquid-in-furrow application methods increased CB 1809 nodule occupancy at least three-fold above background levels at Bergville (pH 5.16) and Morgenzon (pH 6.33). Inoculation did not, however, increase CB 1809 nodule occupancy at Koedoeskop (pH 7.76), possibly because alkaline soil conditions favoured the serotype 135 population predominant at this site.  相似文献   

5.
Bacteroids of Bradyrhizobium japonicum strain CB1809, unlike CC705, do not have a high level of constitutive nitrate reductase (NR; EC 1.7.99.4) in the soybean (Glycine max. Merr.) nodule. Ex planta both strains have a high activity of NR when cultured on 5 mM nitrate at 2% O2 (v/v). Nitrite reductase (NiR) was active in cultured cells of bradyrhizobia, but activity with succinate as electron donor was not detected in freshly-isolated bacteroids. A low activity was measured with reduced methyl viologen. When bacteroids of CC705 were incubated with nitrate there was a rapid production of nitrite which resulted in repression of NR. Subsequently when NiR was induced, nitrite was utilized and NR activity recovered. Nitrate reductase was induced in bacteroids of strain CB1809 when they were incubated in-vitro with nitrate or nitrite. Increase in NR activity was prevented by rifampicin (10 g· ml-1) or chloramphenicol (50 g·ml-1). Nitrite-reductase activity in bacteroids of strain CB1809 was induced in parallel with NR. When nitrate was supplied to soybeans nodulated with strain CC705, nitrite was detected in nodule extracts prepared in aqueous media and it accumulated during storage (1°C) and on further incubation at 25°C. Nitrite was not detected in nodule extracts prepared in ethanol. Thus nitrite accumulation in nodule tissue appears to occur only after maceration and although bacteroids of some strains of B. japonicum have a high level of a constitutive NR, they do not appear to reduce nitrate in the nodule because this anion does not gain access to the bacteroid zone. Soybeans nodulated with strains CC705 and CB1809 were equally sensitive to nitrate inhibition of N2 fixation.Abbreviations NR nitrate reductase - NiR nitrite reductase - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

6.
This study investigated differences in sensitivity to nitrate of soybean (Glycine max cv. Davis) symbioses with 16 different Rhizobium japonicum strains. When nitrate (20 mM) was added to established symbioses, there were no significant differences in the degree of inhibition of acetylene reduction for any of the 16 strains. When nitrate was present during the establishment of nodules, high levels of nitrate (10 mM) were equally inhibitory on all symbioses, whereas specific strain effects appeared at low (0.5 mM) to medium (2.0 mM) levels of nitrate. At 1.5 mM nitrate in solution culture, the days to emergence of nodules varied from less than 10 (CB:1809, Nit61A118) to more than 16 (11 of 16 strains). In a clay-pot trial maintained at the low nitrate level (0.5 mM), symbioses with CB:1809 increased total nodule mass by 30% relative to nitrate-free controls. In the presence of 2.0 mM nitrate, CB:1809 maintained total nodule mass. For the remaining 6 strains tested, total nodule mass decreased to below the levels of the nitrate-free controls. In a separate clay pot trial, CB:1809 increased its competitive ability relative to USDA:110 when nitrate was added. If no nitrate was added, CB:1809 occupied 0.97 times as many nodules as USDA:110; when 10 mM nitrate was added, CB:1809 occupied 1.75 times as many nodules as USDA:110. Attempts to select nitrogen-adapted substrains of R. japonicum through sequential isolation and infection of plants grown on nitrate were not successful.  相似文献   

7.
8.
Construction in vitro of a cloned nar operon from Escherichia coli.   总被引:13,自引:8,他引:5       下载免费PDF全文
To clone the nar operon of Escherichia coli without an effective selection procedure for the nar+ phenotype, a strategy utilizing nar::Tn5 mutants was employed. Partial segments of the nar operon containing Tn5 insertions were cloned into plasmid pBR322 by using the transposon resistance character for selection. A hybrid plasmid was constructed in vitro from two of these plasmids and isolated by a procedure that involved screening a population of transformed nar(Ts) mutant TS9A for expression of thermal stable nitrate reductase activity. A detailed restriction site map of the resulting plasmid, pSR95, corresponded closely to the composite restriction endonuclease map deduced for the nar region from maps of the cloned nar::Tn5 fragments. When transformed with pSR95, wild-type strain PK27 overproduced the alpha, beta, and gamma subunits of nitrate reductase, although nitrate reductase activity was only slightly increased. The alpha and beta subunits were overproduced about 5- to 10-fold and accumulated mostly as an inactive aggregate in the cytoplasm; the gamma subunit overproduction was detected as a threefold increase in the specific content of cytochrome b555 in the membrane fraction. Functional nitrate reductase and the cytochrome spectrum associated with functional nitrate reductase were restored in the nar::Tn5 mutant EE1 after transformation with pSR95. Although the specific activity of nitrate reductase in this case was less than that of the wild type, both the alpha and beta subunits appeared to be overproduced in an inactive form. In both strains PK27(pSR95) and EE1(pSR95), the formation of nitrate reductase activity and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the accumulation of inactive subunits were repressed during aerobic growth. From these observations and the demonstration that pSR95 contains a functional nor operon that encodes the alpha, beta, gamma subunits of nitrate reductase.  相似文献   

9.
All species of Rhizobium except R. lupini had nitrate reductase activity. Only R. lupini was incapable of growth with nitrate as the sole source of nitrogen. However, the conditions necessary for the induction of nitrate reductase varied among species of Rhizobium. Rhizobium japonicum and some Rhizobium species of the cowpea strains expressed nitrate reductase activities both in the root nodules of appropriate leguminous hosts and when grown in the presence of nitrate. Rhizobium trifolii, R. phaseoli, and R. leguminosarum did not express nitrate reductase activities in the root nodules, but they did express them when grown in the presence of nitrate. In bacteroids of R. japonicum and some strains of cowpea Rhizobium, high N2 fixation activities were accompanied by high nitrate reductase activities. In bacteroids of R. trifolii, R. leguminosarum, and R. phaseoli, high N2 fixation activities were not accompanied by high nitrate reductase activities.  相似文献   

10.
11.
Tn5 transposon mutagenesis was carried out in Bradyrhizobium japonicum strain USDA 110 to produce defective mutants. From over one thousand clones expressing low levels of nitrate reductase activity as free-living bacteria, approximately five percent had significantly different ratios of nodulation, N2 fixation or nitrate reductase activity compared to the wild strain when determined in bacteroids from soybean nodules. Tn5 insertions were checked previously and mutants were arranged into four different groups. Only one of these groups, designated AN, was less effective at N2 fixation than the wild strain, suggesting a mutation in a domain shared by nitrogenase and NR. The remaining groups of insertions successfully nodulated and were as effective at N2 fixation as the wild strain, but showed diminished ability to reduce nitrate both in nodules and in the isolated bacteroids when assayed in vitro with NADH or methyl viologen as electron donors. PCR amplification demonstrated that Tn5 insertions took place in different genes on each mutant group and the type of mutant (CC) expressing almost no nitrate reductase activity under all treatments seemed to possess transposable elements in two genes. Induction of nitrate reductase activity by nitrate was observed only in those clones expressing a low constitutive activity (AN and AE). Nitrate reductase activity in bacteroids along nodule growth decreased in all groups including the ineffective AN group, whose nodulation was highly inhibited by nitrate at 5 mmol/L N. Host-cultivar interaction seemed to influence the regulation of nitrate reductase activity in bacteroids. Total or partial repression of nitrate reductase activity in bacteroids unaffected by N2 fixation (CC, AJ and AE groups) improved nodule resistance to nitrate and N yields of shoots over those of the wild strain. These observations may suggest that some of the energy supplied to bacteroids was wasted by its constitutive NRA.  相似文献   

12.
The Pseudomonas fluorescens YT101 gene narG, which encodes the catalytic alpha subunit of the respiratory nitrate reductase, was disrupted by insertion of a gentamicin resistance cassette. In the Nar(-) mutants, nitrate reductase activity was not detectable under all the conditions tested, suggesting that P. fluorescens YT101 contains only one membrane-bound nitrate reductase and no periplasmic nitrate reductase. Whereas N(2)O respiration was not affected, anaerobic growth with NO(2) as the sole electron acceptor was delayed for all of the Nar(-) mutants following a transfer from oxic to anoxic conditions. These results provide the first demonstration of a regulatory link between nitrate and nitrite respiration in the denitrifying pathway.  相似文献   

13.
Ectomycorrhizal (ECM) fungi are often considered to be most prevalent under conditions where organic sources of N predominate. However, ECM fungi are increasingly exposed to nitrate from anthropogenic sources. Currently, the ability of ECM fungi to metabolize this nitrate is poorly understood. Here, growth was examined among 106 isolates, representing 68 species, of ECM fungi on nitrate as the sole N source. In addition, the occurrence of genes coding for the nitrate reductase enzyme (nar gene) in a broad range of ectomycorrhizal fungi was investigated. All isolates grew on nitrate, but there was a strong taxonomic signature in the biomass production, with the Russulaceae and Amanita showing the lowest growth. Thirty-five partial nar sequences were obtained from 43 tested strains comprising 31 species and 10 genera. These taxa represent three out of the four clades of the Agaricales within which ECM fungi occur. No nar sequences were recovered from the Russulaceae and Amanita, but Southern hybridization showed that the genes were present. The results demonstrate that the ability to utilize nitrate as an N source is widespread in ECM fungi, even in those fungi from boreal forests where the supply of nitrate may be very low.  相似文献   

14.
Spontaneous chlorate-resistant (Clr) mutants of three classes were isolated from Nostoc muscorum under three different selective conditions. A Clr-N2 class of mutants lacked nitrate reductase and showed nitrate inhibition of nitrogen fixation. A Clr-NO3 group of het+ nif- mutants formed heterocysts, but lacked nitrogen fixation and active nitrogenase enzyme. The Clr-NO2 class included those mutants deficient in both active nitrogenase and nitrate reductase, as they were unable to grow at the expense of molecular nitrogen or with nitrate nitrogen. The results suggest a common genetic determinant of active nitrogenase and nitrate reductase in the blue-green alga N. muscorum.  相似文献   

15.
Abstract Chlorate-resistant mutants were generated by random insertion of the transposon Tn5 into genomic DNA of Pseudomonas stutzeri ZoBell strain and selected for loss of nitrate respiration (Nar phenotype). The mutants were differentiated by restriction-fragment analysis, by assaying for nitrate assimilation and for molybdenum co-factor activity, and by the amount of respiratory nitrate reductase. Two mutants, lacking both nitrate respiration and nitrate assimilation, over-produced an inactive nitrate reductase but synthesized in the presence of nitrate only a reduced amount of respiratory nitrite reductase (cytochrome cd 1). Expression of cytochrome cd 1 in these mutants was specifically induced by nitrate, suggesting a sensor system for this substrate.  相似文献   

16.
Nitrate reductase (nar) A, B and E mutants of Escherichia coli with plasmids carrying Klebsiella pneumoniae nitrogen fixation (nif) genes reduced acetylene independently of added molybdate, but nar D mutants showed pleiotropic dependence on the concentration of added molybdate for expression of both nar and nif. No complementation of nar mutations by nif occurred; nitrite but not nitrate repressed nif in nar hosts. Derepression of nif occurred in molybdenum-deficient nar D (nif) strains since nitrogenase peptides were present. nifB mutants, thought to have a lesion in the pathway of molybdenum to nitrogenase, as well as nif deletion mutants, had normal nitrate reductase activity.  相似文献   

17.
李杰  周俊初 《遗传学报》2000,27(8):742-750
以pLAFR3为载体构建重组质粒pHN207,携带有来自苜蓿根瘤菌(Sinorhizobium meliloti)的四碳二羧酸转移酶基因dctABD、来自pTR102的parCBFA/DE基因和标记发光酶基因luxAB。利用2亲本杂交法,将重组质粒pHN207导入大豆慢生根瘤菌(Bradyrhizobium japonicum)TA11和CB1809,分别考察了转移接合子中外源重组质粒在人工培养条  相似文献   

18.
以pLAFR3为载体构建重组质粒pHN207,携带有来自苜蓿根瘤菌(Sinorhizobium meliloti)的四碳二羧酸转移酶基因dctABD、来自pTR102的parCBA/DE基因和标记发光酶基因luxAB。利用2亲本杂交法,将重组质粒pHN207导入大豆慢生根瘤菌(Bradyrhizobium japonicum)TA11和CB1809,分别考察了转移接合子中外源重组质粒在人工培养条件和共生条件下的稳定性,结果表明par基因的引入明显提高pLAFR3在TA11和CB1809中的稳定性。dctABD基因可显著提高TA11和CB1809在大豆黑龙33、宁镇一号和渝豆一号上的共生固氮能力,使结瘤植物的地上部分干重(生物量)和总氮量等指标较对照组有显著提高。  相似文献   

19.
R483, a plasmid of the Ialpha incompatibility group, contained a deoxyribonucleic acid (DNA) sequence encoding resistance to trimethoprim (TpR) and streptomycin (SmR) that could be transposed to other replicons, i.e., to the Escherichia coli chromosome and to related and unrelated plasmids. Each transposition resulted in the acquisition by the recipient replicon of a segment of DNA of about 9 X 10(6) daltons, both resistance genes, but never the colicin Ia or pilus genes of R483. Transposition took place at a single chromosomal site between dnaA and ilv and did not suppress the DnaA phenotype, in contrast to integration of the whole R483 plasmid. The chromosome, having received the transposition, could secondarily act as a transposition donor to another plasmid. Such a plasmid was indistinguishable from one having received a direct transposition from R483. TpR SmR transposition was very site specific and did not require a functional recA+ gene. We postulate that the TpR SmR segment of R483 is a transposon (TnC) with specific boundary sequences.  相似文献   

20.
Dissimilatory nitrate reductase (Nar) was solubilized and partially purified from the large particle (mitochondrial) fraction of the denitrifying fungus Fusarium oxysporum and characterized. Many lines of evidence showed that the membrane-bound Nar is distinct from the soluble, assimilatory nitrate reductase. Further, the spectral and other properties of the fungal Nar were similar to those of dissimilatory Nars of Escherichia coli and denitrifying bacteria, which are comprised of a molybdoprotein, a cytochrome b, and an iron-sulfur protein. Formate-nitrate oxidoreductase activity was also detected in the mitochondrial fraction, which was shown to arise from the coupling of formate dehydrogenase (Fdh), Nar, and a ubiquinone/ubiquinol pool. This is the first report of the occurrence in a eukaryote of Fdh that is associated with the respiratory chain. The coupling with Fdh showed that the fungal Nar system is more similar to that involved in the nitrate respiration by Escherichia coli than that in the bacterial denitrifying system. Analyses of the mutant species of F. oxysporum that were defective in Nar and/or assimilatory nitrate reductase conclusively showed that Nar is essential for the fungal denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号