首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A probabilistic model of decompression sickness is modified by introducing corrections that determine more precisely the risk of tissue injury by gas bubbles as a function of blood supply and bubble nucleation intensity. Parameters of the “worst” virtual tissues and theoretical curves corresponding to empirical data on the cumulative probability of decompression sickness symptoms for some altitude decompression procedures are determined. The parameters are shown to depend on final pressure, physical load, and duration of preoxygenation.  相似文献   

2.
p6rly detection of bubbles may provide clues to the mechanism of their formation, and a knowledge of their extent during a decompression may allow the prevention of decompression sickness. We have used ultrasound imaging to study bubble formation in peripheral tissues. The results suggest that: (a) a threshold supersaturation for bubble formation exists; (b) the earliest bubbles are intravascular; (c) before signs of decompression sickness a substantial accumulation of stationary bubbles occurs. Despite the success of Doppler methods in detecting moving bubbles after decompressions normally considered safe, recent studies have shown that the correlation between number of bubbles detected and symptoms of decompression sickness is often poor. We have used a time integral of the ultrasound images, which avoids laborious image analysis, to follow the extent of both moving and stationary bubbles. Human trials involving a wide variety of decompressions suggest that correct prediction of symptoms is possible.  相似文献   

3.
4.
The consequences of complement activation and the symptoms of decompression sickness are similar. Consequently, the relation between the sensitivity of individuals to complement activation by air bubbles and their susceptibility to decompression sickness has been examined. Plasma samples from 34 individuals were incubated with air bubbles, and the concentration of the fluid phase metabolites of complement activation C3a, C4a, and C5a were measured with radioimmunoassays. It was found that both the anaphylatoxins C3a and C5a were produced by the presence of air bubbles but that the anaphylatoxin C4a was not. This finding indicates that air bubbles activate the complement system by the alternate pathway. One group of individuals was found to be particularly sensitive to complement activation by this pathway. They produced 3.3 times more C3a and 5.3 times more C5a in their plasma samples incubated with air bubbles as did the other group. Sixteen individuals were subjected to a series of pressure profiles that were severe enough to produce bubbles in their circulatory system that could be detected by Doppler ultrasonic monitoring. The group of individuals that had been identified as being more sensitive to complement activation by the alternate pathway was also found to be more susceptible to decompression sickness.  相似文献   

5.
For altitude decompressions, we hypothesized that reported onset times of limb decompression illness (DCI) pain symptoms follow a probability distribution related to total bubble volume [V(b.)(t)] as a function of time. Furthermore, we hypothesized that the probability of ever experiencing DCI during a decompression is associated with the cumulative volume of bubbles formed. To test these hypotheses, we first used our previously developed formation-and-growth model (Am J Physiol Regulatory Integrative Comp Physiol 279: R2304-R2316, 2000) to simulate Vb.(t) for 20 decompression profiles in which 334 human subjects performed moderate repetitive skeletal muscle exercise (827 kJ/h) in an altitude chamber. Using survival analysis, we determined that, for a controlled condition of exercise, the fraction of the subject population susceptible to DCI can be approximately expressed as a power function of the formation-and-growth model-predicted cumulative volume of bubbles throughout the altitude exposure. Furthermore, for this fraction, the probability density distribution of DCI onset times is approximately equal to the ratio of the time course of formation-and growth-modeled total bubble volume to the predicted cumulative volume.  相似文献   

6.
The dose-response relationship for decompression magnitude and venous gas emboli (VGE) formation in humans was examined. Pressure exposures of 138, 150, and 164 kPa (12, 16, and 20.5 ft of seawater gauge pressure) were conducted in an underwater habitat for 48 h. The 111 human male volunteer subjects then ascended directly to the surface in less than 5 min and were monitored for VGE with a continuous-wave Doppler ultrasound device over the precordium or the subclavian veins at regular intervals for a 24-h period. No signs or symptoms consistent with decompression sickness occurred. However, a large incidence of VGE detection was noted. These data were combined with those from our previously reported experiments at higher pressures, and the data were fit to a Hill dose-response equation with nonlinear least-squares or maximum likelihood routines. Highly significant fits of precordial VGE incidences were obtained with the Hill equation (saturation depth pressure at which there is a 50% probability of detectable VGE [D(VGE)50] = 150 +/- 1.2 kPa). Subclavian monitoring increased the sensitivity of VGE detection and resulted in a leftward shift [D(VGE)50 = 135 +/- 2 kPa] of the best-fit curve. We conclude that the reduction in pressure necessary to produce bubbles in humans is much less than was previously thought; 50% of humans can be expected to generate endogenous bubbles after decompression from a steady-state pressure exposure of only 135 kPa (11 ft of seawater). This may have significant implications for decompression schedule formulation and for altitude exposures that are currently considered benign. These results also imply that endogenous bubbles arise from preexisting gas collections.  相似文献   

7.
In response to exercise performed before or after altitude decompression, physiological changes are suspected to affect the formation and growth of decompression bubbles. We hypothesized that the work to change the size of a bubble is done by gas pressure gradients in a macro- and microsystem of thermodynamic forces and that the number of bubbles formed through time follows a Poisson process. We modeled the influence of tissue O(2) consumption on bubble dynamics in the O(2) transport system in series against resistances, from the alveolus to the microsystem containing the bubble and its surrounding tissue shell. Realistic simulations of experimental decompression procedures typical of actual extravehicular activities were obtained. Results suggest that exercise-induced elevation of O(2) consumption at altitude leads to bubble persistence in tissues. At the same time, exercise-enhanced perfusion leads to an overall suppression of bubble growth. The total volume of bubbles would be reduced unless increased tissue motion simultaneously raises the rate of bubble formation through cavitation processes, thus maintaining or increasing total bubble volume, despite the exercise.  相似文献   

8.
Platelet behavior was studied in rabbit decompression sickness which was brought about by the exposure to 6 ATA for 40 min (bottom time) followed by rapid decompression. Platelet counts significantly decreased after the decompression. Kinetic studies with 111In-oxine-labeled platelets revealed shortened survivals of circulating platelets, and audioradiograms indicated the accumulation of radioactivity in the lungs after the decompression. Although there was no change in the mode volume of platelets after the decompression, the transient appearance of circulating smaller or fragmented platelets suggested a random overdestruction of platelets. Whole and releasable adenine nucleotide contents of platelets were decreased significantly after the decompression. There were no significant changes in cytoplasmic adenine nucleotide contents. Therefore, in decompression sickness, the circulating platelets behaved similarly to those in acquired storage pool disease. Platelet thrombi were found in the pulmonary arteries, compatible with the accumulation of 111In-oxine-labeled platelets. These findings suggest that circulating air bubbles interact with platelets, causing the platelet release reaction, and these activated platelets participate in the formation of thrombi in experimental decompression sickness.  相似文献   

9.
The fate of bubbles formed in tissues during the ascent from a real or simulated air dive and subjected to therapeutic recompression has only been indirectly inferred from theoretical modeling and clinical observations. We visually followed the resolution of micro air bubbles injected into adipose tissue, spinal white matter, muscle, and tendon of anesthetized rats recompressed to and held at 284 kPa while rats breathed air, oxygen, heliox 80:20, or heliox 50:50. The rats underwent a prolonged hyperbaric air exposure before bubble injection and recompression. In all tissues, bubbles disappeared faster during breathing of oxygen or heliox mixtures than during air breathing. In some of the experiments, oxygen breathing caused a transient growth of the bubbles. In spinal white matter, heliox 50:50 or oxygen breathing resulted in significantly faster bubble resolution than did heliox 80:20 breathing. In conclusion, air bubbles in lipid and aqueous tissues shrink and disappear faster during recompression during breathing of heliox mixtures or oxygen compared with air breathing. The clinical implication of these findings might be that heliox 50:50 is the mixture of choice for the treatment of decompression sickness.  相似文献   

10.
Interconnected compartmental models have been used for decades in physiology and medicine to account for the observed multi-exponential washout kinetics of a variety of solutes (including inert gases) both from single tissues and from the body as a whole. They are used here as the basis for a new class of biophysical probabilistic decompression models. These models are characterized by a relatively well-perfused, risk-bearing, central compartment and one or two non-risk-bearing, relatively poorly perfused, peripheral compartment(s). The peripheral compartments affect risk indirectly by diffusive exchange of dissolved inert gas with the central compartment. On the basis of the accuracy of their respective predictions beyond the calibration regime, the three-compartment interconnected models were found to be significantly better than the two-compartment interconnected models. The former, on the basis of a number of criteria, was also better than a two-compartment parallel model used for comparative purposes. In these latter comparisons, the models all had the same number of fitted parameters (four), were based on linear kinetics, had the same risk function, and were calibrated against the same dataset. The interconnected models predict that inert gas washout during decompression is relatively fast, initially, but slows rapidly with time compared with the more uniform washout rate predicted by an independent parallel compartment model. If empirically verified, this may have important implications for diving practice.  相似文献   

11.
Reinertsen, R. E., V. Flook, S. Koteng, and A. O. Brubakk.Effect of oxygen tension and rate of pressure reduction duringdecompression on central gas bubbles. J. Appl.Physiol. 84(1): 351-356, 1998.Reduction inascent speed and an increase in theO2 tension in the inspired airhave been used to reduce the risk for decompression sickness. It haspreviously been reported that decompression speed andO2 partial pressure are linearly related for human decompressions from saturation hyperbaric exposures. The constant of proportionality K(K = rate/partial pressure of inspiredO2) indicates the incidence ofdecompression sickness. The present study investigated the relationshipamong decompression rate, partial pressure of inspiredO2, and the number of central gasbubbles after a 3-h dive to 500 kPa while breathing nitrox with an O2 content of 35 kPa. Weused transesophageal ultrasonic scanning to determine the number ofbubbles in the pulmonary artery of pigs. The results show that, for agiven level of decompression stress, decompression rate andO2 tension in the inspired air canbe traded off against each other by using pulmonary artery bubbles asan end point. The results also seem to confirm that decompressions thathave a high K value are morestressful.

  相似文献   

12.
Effects of pressure reduction, decompression rate, and repeated exposure on venous gas bubble formation were determined in five groups (GI, GII, GIII, GIV, and GV) of conscious and freely moving rats in a heliox atmosphere. Bubbles were recorded with a Doppler ultrasound probe implanted around the inferior caval vein. Rats were held for 16 h at 0.4 MPa (GI), 0.5 MPa (GII and GIII), 1.7 MPa (GIVa), or 1.9 MPa (GIV and GV), followed by decompression to 0.1 MPa in GI to GIII and to 1.1 MPa in GIV and GV. A greater decompression step, but at the same rate (GII vs. GI and GIVb vs. GIVa), resulted in significantly more bubbles (P < 0.01). A twofold decompression step resulted in equal amount of bubbles when decompressing to 1.1 MPa compared with 0.1 MPa. The faster decompression in GII and GVa (10.0 kPa/s) resulted in significantly more bubbles (P < 0.01) compared with GIII and GVb (2.2 kPa/s). No significant difference was observed in cumulative bubble score when comparing first and second exposure. With the present animal model, different decompression regimes may be evaluated.  相似文献   

13.
The occurrence of decompression sickness in animals and humans is characterized by the extreme variability of individual response. Nevertheless, models and analyses of decompression results have generally used a critical value approach to separate safe and unsafe decompression procedures. Application of the principle of maximum likelihood provides a formal and consistent way to quantify decompression risk and to apply models to data on decompression outcome. By use of the maximum likelihood principle, a number of models were fit to data from dose-response and maximum pressure-reduction experiments with both rats and men. Several different formulations of two- and three-parameter models described the data well. In addition to summarizing data sets, the analyses provide a way to maximize the value of experimental observations, test theoretical predictions, estimate uncertainty in conclusions, and recommend safe practices.  相似文献   

14.
A probabilistic model was used to predict decompression sickness (DCS) outcome in pigs during exposures to hyperbaric H(2) to quantify the effects of H(2) biochemical decompression, a process in which metabolism of H(2) by intestinal microbes facilitates decompression. The data set included 109 exposures to 22-26 atm, ca. 88% H(2), 9% He, 2% O(2), 1% N(2), for 0.5-24 h. Single exponential kinetics described the tissue partial pressures (Ptis) of H(2) and He at time t: Ptis = integral (Pamb - Ptis). tau(-1) dt, where Pamb is ambient pressure and tau is a time constant. The probability of DCS [P(DCS)] was predicted from the risk function: P(DCS) = 1 - e(-r), where r = integral (Ptis(H(2)) + Ptis(He) - Thr - Pamb). Pamb(-1) dt, and Thr is a threshold parameter. Inclusion of a parameter (A) to estimate the effect of H(2) metabolism on P(DCS): Ptis(H(2)) = integral (Pamb - A - Ptis(H(2))). tau(-1) dt, significantly improved the prediction of P(DCS). Thus lower P(DCS) was predicted by microbial H(2) metabolism during H(2) biochemical decompression.  相似文献   

15.
Respiratory decompression sickness (RDCS, "the chokes") is a potentially lethal consequence of ambient pressure reduction. Lack of a clearly suitable animal model has impeded understanding of this condition. RDCS, unaccompanied by central nervous system signs, occurred in 17 of 18 unanesthetized sheep exposed to compressed air at 230 kPa (2.27 ATA) for 22 h, returned to normal pressure for approximately 40 min, and taken to simulated altitude (0.75 ATA, 570 Torr). Respiratory signs, including tachypnea, sporadic apnea, and labored breathing, were accompanied by precordial Doppler ultrasound evidence of marked venous bubble loading. Pulmonary arterial pressures exceeded 30 Torr in five catheterized sheep that died or became moribund. Hypoxemia (arterial Po2 less than 40 Torr), neutropenia, and thrombocytopenia were observed. Peribronchovascular edema was the most prominent necropsy finding. Chest radiography indicated interstitial edema in most affected sheep. High body weight and catheterization predisposed the sheep to severe RDCS. It appears that this protocol reliably provides a useful animal model for studies of RDCS and obstructive pulmonary hypertension, that the precipitating event is massive pulmonary embolization by bubbles, and that venous bubbles, detected by Doppler ultrasound, can signal impending RDCS.  相似文献   

16.
A mathematical model simulating transport of gases between a bubble resulted from decompression and tissue around is presented. With the help of the model the influence of gas mixture and density of the bubble forming centres upon the growth rate was studied. An important part of CO2 in the bubble forming was found out. The bubbles with He have been shown to grow faster than those with N2. At a 5-10-fold decrease of the outer pressure during 1-2 seconds the bubbles can reach sizes which violate hemodynamics in the system of microcirculation.  相似文献   

17.
In vivo bubble formation was studied in the megalopal stage of the crab Pachygrapsus crassipes. The animals were equilibrated with elevated argon, nitrogen, or helium pressures then rapidly decompressed to atmospheric pressure. Voluntary motions induced bubble nucleation in leg joints after exposures to as low as 2 atm nitrogen (gauge pressure). Delays of several minutes sometimes passed between decompression and bubble formation. Mechanically stimulating the animals to move their legs increased this bubble formation, whereas immobilizing the legs before gas equilibration prevented it, even in animals decompressed from 150 atm nitrogen. We conclude that preformed nuclei are not responsible for bubbles developing in the legs of this animal. Instead, tribonucleation of bubbles apparently occurs as a result of limb motions at relatively low gas supersaturations.  相似文献   

18.
Diving acclimatization refers to a reduced susceptibility to acute decompression sickness (DCS) in individuals undergoing repeated compression-decompression cycles. We demonstrated in a previous study that the mechanism responsible for this acclimatization is similar to that of stress preconditioning. In this study, we investigated the protective effect of prior DCS preconditioning on the severity of neurological DCS in subsequent exposure to high pressure in rabbits. We exposed the rabbits (n = 10) to a pressure cycle of 6 absolute atmospheres (ATA) for 90 min, which induced signs of neurological DCS in 60% of the animals. Twenty-four hours after the pressure cycle, rabbits with DCS expressed more heat-shock protein 70 (HSP70) in the lungs, liver, and heart than rabbits without signs of disease or those in the control group (n = 6). In another group of rabbits (n = 24), 50% of animals presented signs of neurological DCS after exposure to high pressure, with a neurological score of 46.5 (SD 19.5). A course of hyperbaric oxygen therapy alleviated the signs of neurological DCS and ensured the animals' survival for 24 h. Experiencing another pressure cycle of 6 ATA for 90 min, 50% of 12 rabbits with prior DCS preconditioning developed signs of DCS, with a neurological score of 16.3 (SD 28.3), significantly lower than that before hyperbaric oxygen therapy (P = 0.002). In summary, our results show that the occurrence of DCS in rabbits after rapid decompression is associated with increased expression of a stress protein, indicating that the stress response is induced by DCS. This phenomenon was defined as "DCS preconditioning." DCS preconditioning attenuated the severity of neurological DCS caused by subsequent exposure to high pressure. These results suggest that bubble formation in tissues activates the stress response and stress preconditioning attenuates tissue injury on subsequent DCS stress, which may be the mechanism responsible for diving acclimatization.  相似文献   

19.
Isolated inner ear decompression sickness (DCS) is recognized in deep diving involving breathing of helium-oxygen mixtures, particularly when breathing gas is switched to a nitrogen-rich mixture during decompression. The biophysical basis for this selective vulnerability of the inner ear to DCS has not been established. A compartmental model of inert gas kinetics in the human inner ear was constructed from anatomical and physiological parameters described in the literature and used to simulate inert gas tensions in the inner ear during deep dives and breathing-gas substitutions that have been reported to cause inner ear DCS. The model predicts considerable supersaturation, and therefore possible bubble formation, during the initial phase of a conventional decompression. Counterdiffusion of helium and nitrogen from the perilymph may produce supersaturation in the membranous labyrinth and endolymph after switching to a nitrogen-rich breathing mixture even without decompression. Conventional decompression algorithms may result in inadequate decompression for the inner ear for deep dives. Breathing-gas switches should be scheduled deep or shallow to avoid the period of maximum supersaturation resulting from decompression.  相似文献   

20.
Endothelial dysfunction induced by bubbles plays an important role in decompression sickness (DCS), but the mechanism of which has not been clear. The present study was to investigate the role of autophagy in bubble‐induced endothelial injury. Human umbilical vein endothelial cells (HUVECs) were treated with bubbles, autophagy markers and endothelial injury indices were determined, and relationship strengths were quantified. Effects of autophagy inhibitor 3‐methyladenine (3‐MA) were observed. Bubble contact for 1, 5, 10, 20 or 30 minutes induced significant autophagy with increases in LC3‐II/I ratio and Beclin‐1, and a decrease in P62, which correlated with bubble contact duration. Apoptosis rate, cytochrome C and cleaved caspase‐3 increased, and cell viability decreased following bubble contact for 10, 20 or 30 minutes, but not for 1 or 5 minutes. Injuries in HUVECs were correlated with LC3‐II/I ratio and partially reversed by 3‐MA in 10, 20 or 30 minutes contact, but worsened in 1 or 5 minutes. Bubble pre‐conditioning for 1 minutes resulted in increased cell viability and decreased apoptosis rate compared with no pre‐conditioning, and 30‐minutes pre‐conditioning induced opposing changes, all of which were inhibited by 3‐MA. In conclusion, autophagy was involved and played a biphasic role in bubble‐induced endothelial injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号