首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

2.
Abstract. The photosynthetic responses to temperature in C3, C3-C4 intermediate, and C4 species in the genus Flaveria were examined in an effort to identify whether the reduced photorespiration rates characteristic of C3-C4 intermediate photosynthesis result in adaptive advantages at warm leaf temperatures. Reduced photorespiration rates were reflected in lower CO2 compensation points at all temperatures examined in the C3-C4 intermediate, Flaveria floridana, compared to the C3 species, F. cronquistii. The C3-C4 intermediate, F. floridana, exhibited a C3-like photosynthetic temperature dependence, except for relatively higher photosynthesis rates at warm leaf temperatures compared to the C3 species, F. cronquistii. Using models of C3 and C3-C4 intermediate photosynthesis, it was predicted that by recycling photorespired CO2 in bundle-sheath cells, as occurs in many C3-C4 intermediates, photosynthesis rates at 35°C could be increased by 28%, compared to a C3 plant. Without recycling photorespired CO2, it was calculated that in order to improve photosynthesis rates at 35°C by this amount in C3 plants, (1) intercellular CO2 partial pressures would have to be increased from 25 to 31 Pa, resulting in a 57% decrease in water-use efficiency, or (2) the activity of RuBP carboxylase would have to be increased by 32%, resulting in a 22% decrease in nitrogen-use efficiency. In addition to the recycling of photorespired CO2, leaves of F. floridana appear to effectively concentrate CO2 at the active site of RuBP carboxylase, increasing the apparent carboxylation efficiency per unit of in vitro RuBP carboxylase activity. The CO2-concentrating activity also appears to reduce the temperature sensitivity of the carboxylation efficiency in F. floridana compared to F. cronquistii. The carboxylation efficiency per unit of RuBP carboxylase activity decreased by only 38% in F. floridana, compared to 50% in F. cronquistii, as leaf temperature was raised from 25 to 35°C. The C3-C4 intermediate, F. ramosissima, exhibited a photosynthetic temperature temperature response curve that was more similar to the C4 species, F. trinervia, than the C3 species, F. cronquistii. The C4-like pattern is probably related to the advanced nature of C4-like biochemical traits in F. ramosissima The results demonstrate that reductions in photorespiration rates in C3-C4 intermediate plants create photosynthetic advantages at warm leaf temperatures that in C3 plants could only be achieved through substantial costs to water-use efficiency and/or nitrogen-use efficiency.  相似文献   

3.
Carbon isotope discrimination in C3-C4 intermediates   总被引:1,自引:1,他引:0  
Carbon isotope discrimination in C3–C4 intermediates is determined by fractionations during diffusion and the biochemical fractionations occurring during CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation. These biochemical fractionations in turn depend on the fractionation by Rubisco in the mesophyll, the amount of CO2 fixation occurring in the bundle sheath, the extent of bundle-sheath leakiness and the contribution which C4-cycle activity makes to the CO2 pool there. In most instances, carbon isotope discrimination in C3–C4 intermediates is C3-like because only a small fraction of the total carbon fixed is fixed in the bundle sheath. In particular, this must be the case for Flaveria intermediates which initially fix substantial amounts of CO2 into C4-acids. In C3–C4 intermediates that refix photorespiratory CO2 alone, it is possible for carbon isotope discrimination to be greater than in C3-species, particularly at low CO2 pressures or at high leaf temperatures. Short-term measurements of carbon isotope discrimination and gas exchange of leaves can be used to study the photosynthetic pathways of C3-C4 intermediates and their hybrids as has recently been done for C3 and C4 species.  相似文献   

4.
Evidence is presented contrary to the suggestion that C4 plants grow larger at elevated CO2 because the C4 pathway of young C4 leaves has C3-like characteristics, making their photosynthesis O2 sensitive and responsive to high CO2. We combined PAM fluorescence with gas exchange measurements to examine the O2 dependence of photosynthesis in young and mature leaves of Panicum antidotale (C4, NADP-ME) and P. coloratum (C4, NAD-ME), at an intercellular CO2 concentration of 5 Pa. P. laxum (C3) was used for comparison. The young C4 leaves had CO2 and light response curves typical of C4 photosynthesis. When the O2 concentration was gradually increased between 2 and 40%, CO2 assimilation rates (A) of both mature and young C4 leaves were little affected, while the ratio of the quantum yield of photosystem II to that of CO2 assimilation (ΦPSII/ΦCO2) increased more in young (up to 31%) than mature (up to 10%) C4 leaves. A of C3 leaves decreased by 1·3 and ΦPSII/ΦCO2 increased by 9-fold, over the same range of O2 concentrations. Larger increases in electron transport requirements in young, relative to mature, C4 leaves at low CO2 are indicative of greater O2 sensitivity of photorespiration. Photosynthesis modelling showed that young C4 leaves have lower bundle sheath CO2 concentration, brought about by higher bundle sheath conductance relative to the activity of the C4 and C3 cycles and/or lower ratio of activities of the C4 to C3 cycles.  相似文献   

5.
Abstract Models developed to explain the biphasic response of CO2 compensation concentration to O2 concentration and the C3-like carbon isotope discrimination in C3-C4 intermediate species are used to characterize quantitatively the steps necessary in the evolution of C4 photosynthesis. The evolutionary stages are indicated by model outputs, CO2 compensation concentration and δ13C value. The transition from intermediate plants to C4 plants requires the complete formation of C4 cycle capacity, expressed by the models as transition from C4 cycle limitation by phosphoenolpyruvate (PEP) regeneration rate to limitation by PEP carboxylase activity. Other steps refer to CO2 leakage from bundle sheath cells, to further augmentations of C4 cycle components, to the repression of ribulose-1,5-bisphos-phate carboxylase in the mesophyll cells, and to a decrease in the CO2 affinity of the enzyme. Possibilities of extending the suggested approach to other physiological characteristics, and the adaptive significance of the steps envisaged, are discussed.  相似文献   

6.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

7.
Despite mounting evidence showing that C4 plants can accumulate more biomass at elevated CO2 partial pressure (p(CO2)), the underlying mechanisms of this response are still largely unclear. In this paper, we review the current state of knowledge regarding the response of C4 plants to elevated p(CO2) and discuss the likely mechanisms. We identify two main routes through which elevated p(CO2) can stimulate the growth of both well-watered and water-stressed C4 plants. First, through enhanced leaf CO2 assimilation rates due to increased intercellular p(CO2). Second, through reduced stomatal conductance and subsequently leaf transpiration rates. Reduced transpiration rates can stimulate leaf CO2 assimilation and growth rates by conserving soil water, improving shoot water relations and increasing leaf temperature. We argue that bundle sheath leakiness, direct CO2 fixation in the bundle sheath or the presence of C3-like photosynthesis in young C4 leaves are unlikely explanations for the high CO2-responsiveness of C4 photosynthesis. The interactions between elevated p(CO2), leaf temperature and shoot water relations on the growth and photosynthesis of C4 plants are identified as key areas needing urgent research.  相似文献   

8.
Expression of C4-like photosynthesis in several species of Flaveria   总被引:4,自引:2,他引:2  
Abstract Photosynthetic metabolism was investigated in leaves of five species of Flaveria (Asteraceac), all previously considered to be C4 plants. Leaves were exposed to 14CO2 for different intervals up to 16s. Extrapolation of 14C-product curves to zero time indicated that only F. trinervia and F.bidentis assimilated atmospheric CO2 exclusively through phosphoenolpyruvate carboxylase. The proportion of direct fixation of 14CO2 by ribulose-I, 5-bisphosphate carboxylase/oxygenase (Rubisco) ranged from 5 to 10% in leaves of F. australasica. F. palmeri and F. vaginata. Protoplasts of leaf mesophyll and bundle sheath cells were utilized to examine the intercellular compartmentation of principal photosynthetic enzymes. Leaves of F. australasica, F. palmeri and F. vaginata contained 5 to 7% of the leaf's Rubisco activity in the mesophyll cells, while leaves of F. trinervia and F. bidentis contained at most 0.2 to 0.8% of such activity in their mesophyll cells. Thus, F. trinervia and F. bidentis have the complete C4 syndrome, while F. australasica, F. palmeri and F. vaginata are less advanced, C4-like species.  相似文献   

9.
Because photosynthetic rates in C4 plants are the same at normal levels of O2 (c, 20 kPa) and at c, 2 kPa O2 (a conventional test for evaluating photorespiration in C3 plants) it has been thought that C4 photosynthesis is O2 insensitive. However, we have found a dual effect of O2 on the net rate of CO2 assimilation among species representing all three C4 subtypes from both monocots and dicots. The optimum O2 partial pressure for C4 photosynthesis at 30 °C, atmospheric CO2 level, and half full sunlight (1000 μmol quanta m?2 s?1) was about 5–10 kPa. Photosynthesis was inhibited by O2 below or above the optimum partial pressure. Decreasing CO2 levels from ambient levels (32.6 Pa) to 9.3 Pa caused a substantial increase in the degree of inhibition of photosynthesis by supra-optimum levels of O2 and a large decrease in the ratio of quantum yield of CO2 fixation/quantum yield of photosystem II (PSII) measured by chlorophyll a fluorescence. Photosystem II activity, measured from chlorophyll a fluorescence analysis, was not inhibited at levels of O2 that were above the optimum for CO2 assimilation, which is consistent with a compensating, alternative electron How as net CO2 assimilation is inhibited. At suboptimum levels of O2, however, the inhibition of photosynthesis was paralleled by an inhibition of PSII quantum yield, increased state of reduction of quinone A, and decreased efficiency of open PSII centres. These results with different C4 types suggest that inhibition of net CO2 assimilation with increasing O2 partial pressure above the optimum is associated with photorespiration, and that inhibition below the optimum O2 may be caused by a reduced supply of ATP to the C4 cycle as a result of inhibition of its production photochemically.  相似文献   

10.
Leaves of twelve C3 species and six C4 species were examined to understand better the relationship between mesophyll cell properties and the generally high photosynthetic rates of these plants. The CO2 diffusion conductance expressed per unit mesophyll cell surface area (gCO2cell) cell was determined using measurements of the net rate of CO2 uptake, water vapor conductance, and the ratio of mesophyll cell surface area to leaf surface area (Ames/A). Ames/A averaged 31 for the C3 species and 16 for the C4 species. For the C3 species gCO2cell ranged from 0.12 to 0.32 mm s-1, and for the C4 species it ranged from 0.55 to 1.5 mm s-1, exceeding a previously predicted maximum of 0.5 mm s-1. Although the C3 species Cammissonia claviformis did not have the highest gCO2cell, the combination of the highest Ames and highest stomatal conductance resulted in this species having the greatest maximum rate of CO2 uptake in low oxygen, 93 μmol m-2 s-1 (147 mg dm-2 h-1). The high gCO2cell of the C4 species Amaranthus retroflexus (1.5 mm s-1) was in part attributable to its thin cell wall (72 nm thick).  相似文献   

11.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

12.
The 18O content of CO2 is a powerful tracer of photosynthetic activity at the ecosystem and global scale. Due to oxygen exchange between CO2 and 18O-enriched leaf water and retrodiffusion of most of this CO2 back to the atmosphere, leaves effectively discriminate against 18O during photosynthesis. Discrimination against 18O ( Δ 18O) is expected to be lower in C4 plants because of low ci and hence low retrodiffusing CO2 flux. C4 plants also generally show lower levels of carbonic anhydrase (CA) activities than C3 plants. Low CA may limit the extent of 18O exchange and further reduce Δ 18O. We investigated CO2–H2O isotopic equilibrium in plants with naturally low CA activity, including two C4 (Zea mays, Sorghum bicolor) and one C3 (Phragmites australis) species. The results confirmed experimentally the occurrence of low Δ 18O in C4, as well as in some C3, plants. Variations in CA activity and in the extent of CO2–H2O isotopic equilibrium ( θ eq) estimated from on-line measurements of Δ 18O showed large range of 0–100% isotopic equilibrium ( θ eq = 0–1). This was consistent with direct estimates based on assays of CA activity and measurements of CO2 concentrations and residence times in the leaves. The results demonstrate the potential usefulness of Δ 18O as indicator of CA activity in vivo. Sensitivity tests indicated also that the impact of θ eq < 1 (incomplete isotopic equilibrium) on 18O of atmospheric CO2 can be similar for C3 and C4 plants and in both cases it increases with natural enrichment of 18O in leaf water.  相似文献   

13.
Mesophyll protoplasts and bundle sheath cells were prepared by enzymatic digestion of leaves of Alternanthera tenella, a C3-C4 intermediate species. The intercellular distribution of selected photosynthetic, photorespiratory and respiratory (mitochondrial) enzymes in these meso-phyll and bundle sheath cells was studied. The activity levels of photosynthetic enzymes such as PEP carboxylase (EC 4.1.1.31) or NAD-malic enzyme (EC 1.1.1.39) and photorespiratory enzymes such as glycolate oxidase (EC 1.1.3.1) or NADH-hydroxypyruvate reductase (EC 1.1.1.29) were similar in the two cell types. The activity levels of mitochondrial TCA cycle enzymes such as citrate synthase (EC 4.1.3.7) or fumarase (EC 4.2.1.2) were 2- to 3-fold higher in bundle sheath cells. On the other hand, the activity levels of mitochondrial photorespiratory enzymes, namely glycine decarboxylase (EC 2.1.2.10) and serine hydroxymethyltransferase (EC 2.1.2.1), were 6-9-fold higher in bundle sheath cells than in mesophyll protoplasts. Such preferential localization of mitochondria enriched with the glycine-decarboxylating system in the inner bundle sheath cells would result in efficient refixa-tion of CO2 from not only photorespiration but also dark respiration before its exit from the leaf. We propose that predominant localization of mitochondria specialized in glycine decarboxylation in bundle sheath cells may form the basis of reduced photorespiration in this C3-C4 intermediate species.  相似文献   

14.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   

15.
An experiment was carried out to determine the effects of elevated CO2, elevated temperatures, and altered water regimes in native shortgrass steppe. Intact soil cores dominated by Bouteloua gracilis, a C4 perennial grass, or Pascopyrum smithii, a C3 perennial grass, were placed in growth chambers with 350 or 700 μL L?1 atmospheric CO2, and under either normal or elevated temperatures. The normal regime mimicked field patterns of diurnal and seasonal temperatures, and the high-temperature regime was 4 °C warmer. Water was supplied at three different levels in a seasonal pattern similar to that observed in the field. Total biomass after two growing seasons was 19% greater under elevated CO2, with no significant difference between the C3 and C4 grass. The effect of elevated CO2 on biomass was greatest at the intermediate water level. The positive effect of elevated CO2 on shoot biomass was greater at normal temperatures in B. gracilis, and greater at elevated temperatures in P. smithii. Neither root-to-shoot ratio nor production of seed heads was affected by elevated CO2. Plant tissue N and soil inorganic N concentrations were lower under elevated Co2, but no more so in the C3 than the C4 plant. Elevated CO2 appeared to increase plant N limitation, but there was no strong evidence for an increase in N limitation or a decrease in the size of the CO2 effect from the first to the second growing season. Autumn samples of large roots plus crowns, the perennial organs, had 11% greater total N under elevated CO2, in spite of greater N limitation.  相似文献   

16.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

17.
Abstract The pattern of photosynthetic carbon fixation by leaves of Amaranthus paniculatus L. (a C4 plant) and Oryza sativa L. (a C3 plant) varied with age. Younger leaves of A. paniculatus incorporated 14CO2 into malate and aspartate while senescent leaves fixed predominantly into phosphoglycerate (PGA) and sugar phosphates. Only developing leaves of O. sativa formed malate/aspartate whereas mature and senescent leaves produced PGA/sugar phosphates as the initial labelled products. Correspondingly the ratio of phosphoenolpyruvate/ribulose bisphosphate (RuBP) carboxylase activities was higher in younger leaves of A. paniculatus and developing leaves of O. sativa than in older leaves. However, pulse chase experiments revealed that the main donors of carbon to end products, irrespective of leaf stage, were C4 acids and PGA in A. paniculatus and O. sativa respectively. The results suggest that although an apparent change from initial β-carboxylation to RuBP carboxylation occurs during leaf ontogeny in both the plants, the overall leaf photosynthesis remains C4 or C3. The high rate of 14CO2 incorporation into PGA/sugar phosphates by senescent leaves of A. paniculatus is suggested to be partly due to the increased intercellular spaces in their mesophyll, allowing greater access of CO2 directly to RuBP carboxylase in the bundle sheath.  相似文献   

18.
Abstract Evidence is drawn from previous studies to argue that C3—C4 intermediate plants are evolutionary intermediates, evolving from fully-expressed C3 plants towards fully-expressed C4 plants. On the basis of this conclusion, C3—C4 intermediates are examined to elucidate possible patterns that have been followed during the evolution of C4 photosynthesis. An hypothesis is proposed that the initial step in C4-evolution was the development of bundle-sheath metabolism that reduced apparent photorespiration by an efficient recycling of CO2 using RuBP carboxylase. The CO2-recycling mechanism appears to involve the differential compartmentation of glycine decarboxylase between mesophyll and bundle-sheath cells, such that most of the activity is in the bundlesheath cells. Subsequently, elevated phosphoenolpyruvate (PEP) carboxylase activities are proposed to have evolved as a means of enhancing the recycling of photorespired CO2. As the activity of PEP carboxylase increased to higher values, other enzymes in the C4-pathway are proposed to have increased in activity to facilitate the processing of the products of C4-assimilation and provide PEP substrate to PEP carboxylase with greater efficiency. Initially, such a ‘C4-cycle’ would not have been differentially compartmentalized between mesophyll and bundlesheath cells as is typical of fully-expressed C4 plants. Such metabolism would have limited benefit in terms of concentrating CO2 at RuBP carboxylase and, therefore, also be of little benefit for improving water- and nitrogen-use efficiencies. However, the development of such a limited C4-cycle would have represented a preadaptation capable of evolving into the leaf biochemistry typical of fully-expressed C4 plants. Thus, during the initial stages of C4-evolution it is proposed that improvements in photorespiratory CO2-loss and their influence on increasing the rate of net CO2 assimilation per unit leaf area represented the evolutionary ‘driving-force’. Improved resourceuse efficiency resulting from an efficient CO2-concentrating mechanism is proposed as the driving force during the later stages.  相似文献   

19.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

20.
The mean annual rainfall in southern Africa is found to explain over half of the observed variance in the stable nitrogen (N) isotopic signatures of C3 vegetation in southern Africa (r2=0.54, P<0.01). The inverse relationship between the stable N isotopic signatures of foliar samples from C3 vegetation and long‐term southern African rainfall is found on a scale larger than previously observed. A modest relationship is found between stable carbon (C) isotopic signatures of C3 vegetation and rainfall across the region (r2=0.20, P<0.01). No such relationship is found between stable C and N isotopic signatures of C4 vegetation and rainfall. The explanation of the relationship between 15N in C3 vegetation and the mean annual rainfall presented here is that nutrient availability varies inversely with water availability. This suggests that water‐limited systems in southern Africa are more open in terms of nutrient cycling and therefore the resulting natural abundance of foliar 15N in these systems is enriched. The use of this relationship may be of value to those researchers modeling both the dynamics of vegetation and biogeochemistry across this region. The use of the isotopic enrichment in C3 vegetation as a function of rainfall may provide an insight into nutrient cycling across the semi‐arid and arid regions of southern Africa. This finding has implications for the study of global change, especially as it relates to vegetation responses to changing regional rainfall regimes over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号