首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Transepithelial impedance-analysis studies were performed in turtle bladder epithelium in order to measure changes in the different epithelial membranes resulting from stimulation of electrogenic bicarbonate secretion. Changes in membrane conductance relate to changes in ionic permeability, whereas changes in membrane capacitance relate to changes in membrane area, since most biological membranes exhibit a specific capacitance of 1 F/cm2. The results of this investigation are summarized as follows: (i) cAMP and carbachol, agents which have been shown previously to stimulate electrogenic bicarbonate secretion, result in increases in apical-membrane conductance and capacitance; (ii) these changes occur concomitantly with the observed change in transport (measured using the short-circuit-current technique), thereby suggesting that bicarbonate secretion may be regulated in part by changes in the chloride conductance of the apical membrane; (iii) the increase in conductance does not reflect an increase in the membrane's specific conductance, thereby indicating that it results from the addition of membrane possessing similar ionic permeability as the existing apical membrane; (iv) the magnitude of the changes in capacitance indicate that a minor cell population (-type carbonic-anhydrase-rich cells) increase their apical-membrane area by several-fold; (v) a lack of transport-associated changes in the basolateral-membrane parameters suggest that transport is not regulated by alterations in basolateral-membrane ionic conductance or area; (vi) a lack of colchicine sensitivity, coupled with the magnitude of the changes in apical-membrane capacitance, indicate that the membrane remodeling processes are different from those involved in the regulation of proton secretion in a different cell population (-type carbonic-anhydrase-rich cells).  相似文献   

2.
Summary Proton secretion in the urinary bladder of the freshwater turtle is mediated by proton pumps located in the apical membrane of carbonic-anhydrase (CA)-rich cells. It has been proposed that the rate of proton transport is regulated by endocytotic and exocytotic fusion processes which alter the apical membrane area, and hence number of exposed pumps. Three techniques were used to study this process. Analyses of transepithelial impedance provided estimates of transport-associated changes in net membrane area, as well as other electrical parameters. Electron microscopy allowed visualization of the endocytotic vesicles thought to be involved in the process. Finally, uptake of a florescent fluid-phase markerprovided measurements of the rates of endocytosis. We report the following: (i) endocytotic and exocytotic processes occur primarily in the CA-rich cells; (ii) inhibition of proton transport resulting from 0.5mm acetazolamide (AZ) results in a decrease in the apical membrane area of approximately 0.47 cm2/cm2 tissue; (iii) the apical membrane specific conductance of the CA-rich cells is approximately 220 S/F, and possibly represents a Cl conductance that may function in counter-ion flow; (iv) the decline in transport following AZ is not directly proportional to the decline in apical membrane area, suggesting that changes in pump kinetics are also involved in the regulation of transport; (v) the CA-rich cells exhibit a high rate of constitutive pinocytosis, and hence membrane shuttling, which appears to be independent of the rate of transport; (vi) AZ induces a transient increase in the rates of endocytosis and shuttling; and (vii) the transport-associated changes in apical membrane area may reflect an effect of AZ on a regulated endocytotic pathway which is distinct from the pinocytotic process.  相似文献   

3.
Summary Equivalent-circuit impedance analysis experiments were performed on the urinary bladders of freshwater turtles in order to quantify membrane ionic conductances and areas, and to investigate how changes in these parameters are associated with changes in the rate of proton secretion in this tissue. In all experiments, sodium reabsorption was inhibited thereby unmasking the electrogenic proton secretion process. We report the following: (1) transepithelial impedance is represented exceptionally well by a simple equivalent-circuit model, which results in estimates of the apical and basolateral membrane ionic conductances and capacitances; (2) when sodium transport is inhibited with mucosal amiloride and serosal ouabain, the apical and basolateral membrane conductances and capacitances exhibit a continual decline with time; (3) this decline in the membrane parameters is most likely caused by subtle time-dependent changes in cell volume, resulting in changes in the areas of the apical and basolateral membranes; (4) stable membrane parameters are obtained if the tissue is not treated with ouabain, and if the oncotic pressure of the serosal solution is increased by the addition of 2% albumin; (5) inhibition of proton secretion using acetazolamide in CO2 and HCO 3 -free bathing solutions results in a decrease in the area of the apical membrane, with no significant change in its specific conductance; (6) stimulation of proton transport with CO2 and HCO 3 -containing serosal solution results in an increase in the apical membrane area and specific conductance. These results show that our methods can be used to measure changes in the membrane electrophysiological parameters that are related to changes in the rate of proton transport. Notably, they can be used to quantify in the live tissue, changes in membrane area resulting from changes in the net rates of endocytosis and exocytosis which are postulated to be intimately involved in the regulation of proton transport.  相似文献   

4.
Summary Proton secretion in the urinary bladder of the fresh-water turtle is mediated by a proton pump located in the apical membrane of a population of cells characteristically rich in carbonic anhydrase. Earlier studies have demonstrated that these cells exhibit apical-membrane endocytotic and exocytotic processes which are thought to be involved in the regulation of the rate of proton transport via alterations in the number of pumps within the apical membrane. In this study, we sought to characterize these processes using two different methods. Analysis of transepithelial impedance yielded estimates of membrane capacitance which could be related to membrane area, thereby allowing one to monitor net changes in apical-membrane area resulting from changes in the net rates of endo-and exocytosis. Uptake of the fluid-phase marker FITC-dextran provided a measure of net extracellular volume uptake which was related to net rates of endocytosis. Our major conclusions are summarized as follows. The bladder cells exhibit a high baseline rate of endocytosis which appears to be a constitutive process similar to pinocytosis. This process is completely inhibited when ambient temperature is reduced to 15°C. In addition, serosal application of 0.5mm acetazolamide causes a transient increase in the rate of endocytosis, concomitant with a decrease in the rate of transport. Reduction of ambient temperature to 15°C reduces the rate of acetazolamide-induced endocytosis, but does not abolish it. Addition of 1mm serosal azide not only prevents the acetazolamide-induced increase in endocytosis, but also prevents the decrease in transport caused by acetazolamide. Azide has no effect on the baseline rate of endocytosis, nor does it prevent inhibition of carbonic anhydrase by acetazolamide. The specificity of azide, coupled with the different temperature sensitivities, demonstrate that the constitutive and transport-dependent endocytotic pathways are distinct processes. The observation that azide prevents both the acetazolamide-induced increase in endocytosis and the decrease in transport strongly supports the notion that endocytosis of proton-pump-containing membrane is requisite for the inhibition of transport by acetazolamide. Finally, the results also demonstrate that acetazolamide does not inhibit proton secretion simply by inhibiting carbonic anhydrase.  相似文献   

5.
Summary The conductance of the apical membrane of the toad urinary bladder was studied under voltage-clamp conditions at hyperpolarizing potentials (mucosa negative to serosa). The serosal medium contained high KCl concentrations to reduce the voltage and electrical resistance across the basal-lateral membrane, and the mucosal solution was Na free, or contained amiloride, to eliminate the conductance of the apical Na channels. As the mucosal potential (V m) was made more negative the slope conductance of the epithelium increased, reaching a maximum at conductance of the epithelium increased, reaching a maximum atV m=–100 mV. This rectifying conductance activated with a time constant of 2 msec whenV m was changed abruptly from 0 to –100 mV, and remained elevated for at least 10 min, although some decrease of current was observed. ReturningV m to+100 mV deactivated the conductance within 1 msec. Ion substitution experiments showed that the rectified current was carried mostly by cations moving from cell to mucosa. Measurement of K flux showed that the current could be accounted for by net movement of K across the apical membrane, implying a voltage-dependent conductance to K (G K). Mucosal addition of the K channel blockers TEA and Cs had no effect onG K, while 29mm Ba diminished it slightly. Mucosal Mg (29mm) also reducedG K, while Ca (29mm) stimulated it.G K was blocked by lowering the mucosal pH with an apparent pK1 of 4.5. Quinidine (0.5mm in the serosal bath) reducedG K by 80%.G K was stimulated by ADH (20 mU/ml), 8-Br-cAMP (1mm), carbachol (100 m), aldosterone (5×10–7 m for 18 hr), intracellular Li and extracellular CO2.  相似文献   

6.
Summary Exposing the apical membrane of toad urinary bladder to the ionophore nystatin lowers its resistance to less than 100 cm2. The basolateral membrane can then be studied by means of transepithelial measurements. If the mucosal solution contains more than 5mm Na+, and serosal Na+ is substituted by K+, Cs+, or N-methyl-d-glucamine, the basolateral membrane expresses what appears to be a large Na+ conductance, passing strong currents out of the cell. This pathway is insensitive to ouabain or vanadate and does not require serosal or mucosal Ca2+. In Cl-free SO 4 2– Ringer's solution it is the major conductive pathway in the basolateral membrane even though the serosal side has 60mm K+. This pathway can be blocked by serosal amiloride (K i=13.1 m) or serosal Na+ ions (K i 10 to 20mm). It also conducts Li+ and shows a voltage-dependent relaxation with characteristic rates of 10 to 20 rad sec–1 at 0 mV.  相似文献   

7.
The interlobular duct cells of the guinea-pig pancreas secrete HCO(3)(-) across their luminal membrane into a HCO(3)(-)-rich (125 mM) luminal fluid against a sixfold concentration gradient. Since HCO(3)(-) transport cannot be achieved by luminal Cl-/HCO(3)(-) exchange under these conditions, we have investigated the possibility that it is mediated by an anion conductance. To determine whether the electrochemical potential gradient across the luminal membrane would favor HCO(3)(-) efflux, we have measured the intracellular potential (V(m)) in microperfused, interlobular duct segments under various physiological conditions. When the lumen was perfused with a 124 mM Cl- -25 mM HCO(3)(-) solution, a condition similar to the basal state, the resting potential was approximately -60 mV. Stimulation with dbcAMP or secretin caused a transient hyperpolarization (approximately 5 mV) due to activation of electrogenic Na+-HCO(3)(-) cotransport at the basolateral membrane. This was followed by depolarization to a steady-state value of approximately -50 mV as a result of anion efflux across the luminal membrane. Raising the luminal HCO(3)(-) concentration to 125 mM caused a hyperpolarization (approximately 10 mV) in both stimulated and unstimulated ducts. These results can be explained by a model in which the depolarizing effect of Cl- efflux across the luminal membrane is minimized by the depletion of intracellular Cl- and offset by the hyperpolarizing effects of Na+-HCO(3)(-) cotransport at the basolateral membrane. The net effect is a luminally directed electrochemical potential gradient for HCO(3)(-) that is sustained during maximal stimulation. Our calculations indicate that the electrodiffusive efflux of HCO(3)(-) to the lumen via CFTR, driven by this gradient, would be sufficient to fully account for the observed secretory flux of HCO(3)(-).  相似文献   

8.
This review treats some examples of electrogenic transport across the outer plasmamembrane (plasmalemma) of plant cells. The selection includes primary active uniport by membrane ATPases (e.g., the proton pump), secondary active transport of hexoses by proton-dependent cotransport, and passive uniport of amines. Primacy is given to the presentation of electrophysiological data and to the discussion of voltage-dependence of the transport mechanisms.Lecture from the Annual Meeting of the Deutsche Gesellschaft für Biophysik at Konstanz  相似文献   

9.
Summary Certain polar epithelial cells have strong transport capacities for protons and can be examinedin vitro as part of an intact epithelial preparation. Recent studies in the isolated turtle bladder and other tight urinary epithelia indicate that the apical membranes of the carbonic anhydrase-containing cell population of these tissues contain an electrogenic proton pump which has the characteristics of a proton-translocating ATPase. The translocation of protons is tightly coupled to the energy of ATP hydrolysis. Since the pump translocates protons without coupling to the movement of other ions, it may be regarded as an ideal electrogenic pump. The apparent simplicity of the functional properties has led to extensive studies of the characteristics of this pump and of the cellular organization of the secondary acid-base flows in the turtle bladder. Over a rather wide range of electrochemical potential gradients for protons ( ) across the epithelium, the rate of H+ transport is nearly linear with . The formalisms of equivalent circuit analysis and nonequilibrium thermodynamics have been useful in describing the behavior of the pump, but these approaches have obvious limitations. We have attempted to overcome some of these limitations by developing a more detailed set of assumptions about each of the transport steps across the pump complex and to formulate a working model for proton transport in the turtle bladder that can account for several otherwise unexplained experimental results. The model suggests that the real pump is neither a simple electromotive force nor a constant current source. Depending on the conditions, it may behave as one or the other.  相似文献   

10.
C127 cell lines transfected with wtCFTR, ΔF508CFTR or vector were employed to determine HCO3 fluxes in the presence or absence of functional CFTR, using the pH-sensitive dye BCECF. Both cytosolic alkalinization and acidification were due to activity of anion exchanger and were similar in the three cell lines, indicating that expression of CFTR did not influence anion exchanger activity. In C127wt cells only, cAMP elevating agents significantly stimulated HCO3 fluxes, insensitive to the inhibitor of anion exchanger 4,4′-diisothiocyanate dihydrostilbene-2,2′-disulfonic acid, suggesting that activated CFTR directly mediates both HCO3 influx and efflux and therefore can contribute to intracellular and extracellular pH regulation.  相似文献   

11.
Summary When secretagogues stimulate Cl secretion in canine tracheal epithelium, apical membrane Cl conductance (G a Cl ) increases, and then basolateral membrane K conductance (G b K ) increases. Conversely, inhibition ofG a Cl results in a secondary decrease inG b K . The coordination of the two membrane conductances and regulation ofG b K is critical for maintaining constant intracellular ion concentrations and transepithelial Cl secretion. The purpose of this study was to test two hypotheses about the regulation ofG b K . First, we asked whetherG b K is directly linked to the activity of the Na,K-ATPase. We found that pump activity could be dissociated from K conductance. Inhibition of the Na pump with ouabain, in nonsecreting tissues led to an increase inG b . Elevation of the bathing solution K concentration produced a similar effect. Addition of ouabain to secreting tissues did not appear to alterG b . These results indicate thatG b K does not directly parallel Na pump activity. Second, we asked whether changes inG b K are voltage dependent. We prevented secretagogue-induced depolarization of the electrical potential difference across the basolateral membrane b by clamping b at its resting value during stimulation of Cl secretion with epinephrine. Despite maintaining b constant, the typical changes in transepithelial resistance and the ratio of membrane resistances persisted. This observation indicates that depolarization is not required for the secretagogue-induced increase inG b K . In addition we examined the effect of depolarizing and hyperpolarizing b by passing transepithelial current in secreting and nonsecreting epithelia. Despite depolarizing and hyperpolarizing b within the physiologic range, we observed no significant changes in transepithelial resistance or the ratio of membrane resistance that would suggest a change inG b K . This observation indicates that changes in b are not sufficient to alterG b K . Thus,G b K appears to be regulated by factors other than membrane voltage, or direct coupling to the Na pump.  相似文献   

12.
Summary The ion selectivity of the apical membrane Na channel in the toad urinary bladder was investigated. The electrical potential difference and resistance across the basal-lateral membrane were reduced using high concentrations of KCl in the serosal bathing medium, and gradients for various ions were imposed across the apical membrane by altering the composition of the mucosal bathing medium. Ion fluxes through the channel were measured as the transepithelial current inhibited by amiloride, a specific blocker of the channel's Na conductance. The selectivity sequence for alkali metal cations was H>Li>NaK. K, permeability was barely detectable; the selectivity for Na over K was about 1000:1. Ammonium, hydroxyl ammonium and hydrazinium ions were, like K, virtually impermeant. The results suggest that the size of the unhydrated ion is an important factor in determining permeability in this channel.  相似文献   

13.
Summary In cells of the freshwater algaHydrodictyon africanum, in solutions where [K+]0=0.1mm and pH0>7.0, the membrane in the light is hyperpolarized. The membrane potential difference {ie179-1} has values from –180 to –275 mV, more negative than any ion diffusion potential difference, and is predominantly a function of pH0, and independent of [K+]0. The hyperpolarization of the membrane appears to arise from an electrogenic efflux of H+, estimated from voltage-clamp data to be about 8 nmol m–2 sec–1 when pH0=8.5. In the light the membrane conductanceg m is about 0.084 S m–2. At light-off, {ie179-2} becomes less negative, with a halftime for change of 15 to 30 sec andg m decreases by about 0.052 S m–2. After dark periods of up to 300 sec, {ie179-3} is largely independent of pH0 for values greater than 6.0 and usually behaves as a combined K+ and Na+ diffusion potential with permeability ratioP Na/P K=0.05 to 0.2. The membrane potassium conductanceg K has either a low value of 2–6×10–2 Sm–2, or a high value of up to 18×10–2 S m–2 depending on [K+]0, the transition from low to high values occurring when {ie179-4} moves over a threshold value that is more negative than {ie179-5}, the electrochemical equilibrium potential for K+. The time for half-change of the transition is about 30 sec. The results are consistent with a model of the membrane in which the pump electromotive force and conductance are in parallel with diffusive electromotive forces and conductances. When the pump is operating its properties determine membrane properties, and when it is inoperative, or running at a diminished rate, the membrane properties are determined more by the diffusive pathways. Changes in both pump rate andg K can account for a variety of characteristic changes in membrane PD and conductance occurring in response to ligh-dark changes, changes in light intensity, pasage of externally applied electric current across the membrane and changes in ionic constituents of the external medium.  相似文献   

14.
Summary We have previously shown that stimulation of apical Na-coupled glucose and alanine transport produces a transient depolarization of basolateral membrane potential (V bl) in rabbit proximal convoluted tubule (PCT. Sl segment). The present study is aimed at understanding the origin of the membrane repolarization following the intial effect of addition of luminal cotransported solutes. Luminal addition of 10–15mMl-alanine produced a rapid and highly significant depolarization ofV bl (20.3±1.1 mV,n=15) which was transient and associated with an increase in the fractional K+ conductance of the basolateral membrane (t K) from 8 to 29% (P<0.01,n=6). Despite the significant increase int K, the repolarization was only slightly reduced by the presence of basolateral Ba2+ (2mM,n=6) or quinine (0.5 mM,n=5). The repolarization was greatly reduced in the presence of 0.1 mM 4-acetamino-4isothiocyamostilbene-2,2-disulfonic acid (SITS) and blunted by bicarbonate-free solutions. Intracellular pH (pH i ) determined with the fluorescent dye 2, 7-bis-2-carboxyethyl-5(and-6)-carboxyfluorescein (BCECF), averaged 7.39±0.02 in control solution (n=9) and increased to 7.50±0.03 in the first 15 sec after the luminal application of alanine. This was followed by a significant acidification averaging 0.16±0.01 pH unit in the next 3 min. In conclusion, we believe that, contrary to other leaky epithelia, rabbit PCT can regulate its basolateral membrane potential not only through an increase in K+ conductance but also through a cellular acidification reducing the basolateral HCO 3 exit through the electrogenic Na-3(HCO3) cotransport mechanism.  相似文献   

15.
16.
Summary Osmotic water permeability of the apical membrane of toad urinary epithelium is increased greatly by vasopressin (VP) and is associated with exocytic addition of granules and aggrephores at the apical surface. To determine the physiological role of granule exocytosis, we measured the osmotic water permeability and membrane fluidity of isolated granules, surface membranes and microsomes prepared from toad bladder in the presence and absence of VP.P f was measured by stopped-flow light scattering and membrane fluidity was examined by diphenylhexatriene (DPH) fluorescence anisotropy. In response to a 75mm inward sucrose gradient, granule size decreased with a single exponential time constant of 2.3±0.1 sec (sem, seven preparations, 23°C), corresponding to aP f of 5×10–4 cm/sec; the activation energy (E a ) forP f was 17.6±0.8 kcal/mole. Under the same conditions, the volume of surface membrane vesicles decreased biexponentially with time constants of 0.13 and 1.9 sec; the fast component comprised 70% of the signal. Granule, surface membrane and microsome time constants were unaffected by VP. However, in surface membranes, there was a small decrease (6±2%) in the fraction of surface membranes with fast time constant. DPH anisotropies were 0.253 (granules), 0.224 (surface membrane fluidity is remarkably lower than that of surface and microsomal membranes, and (4) rapid water transport occurs in surface membrane vesicles. The unique physical properties of the granule suggests that apical exocytic addition of granule membrane may be responsible for the low water permeability of the unstimulated apical membrane.  相似文献   

17.
Summary Mammalian urinary bladder undergoes, in a 24-hour period, a series of slow fillings and rapid emptying. In part the bladder epithelium accommodates volume increase by stretching the cells so as to eliminate microscopic folds. In this paper we present evidence that once the cells have achieved a smooth apical surface, further cell stretching causes an insertion of cytoplasmic vesicles resulting in an even greater apical surface area per cell and an enhanced storage capacity for the bladder. Vesicle insertion was stimulated by application of a hydrostatic pressure gradient which caused the epithelium to bow into the serosal solution. Using capacitance as a direct and nondestructive measure of area we found that stretching caused a 22% increase in area. Removal of the stretch caused area to return to within 8% of control. An alternate method for vesicle insertion was swelling the cells by reducing mucosal and serosal osmolarity. This perturbation resulted in a 74% increase in area over a 70-min period. Returning to control solutions caused area to decrease as a single exponential with an 11-min time constant. A microtubule blocking agent (colchicine) dit not inhibit the capacitance increase induced by hypoosmotic solutions, but did cause an increase in capacitance in the absence of a decreased osmolarity. Microfilament disrupting agent (cytochalasin B, C, B.) inhibited any significant change in capacitance after osmotic challenge. Treatment of bladders during swelling with C.B. and subsequent return, to control solutions increased the time constant of the recovery to control values (22 min). The Na+-transporting ability of the vesicles was determined and found to be greater than that of the apical membrane. Aldosterone increased the transport ability of the vesicles. We conclude that some constituent of urine causes a loss of apical membrane permeability. Using electrophysiological methods we estimated that the area of cytoplasmic vesicles is some 3.3 times that of the apical membrane area. We discuss these results in a general model for vesicle translocation in mammalian urinary bladder.  相似文献   

18.
In leaves of Elodea densa the membrane potential measured in light equals the equilibrium potential of H+ on the morphological upper plasma membrane. The apoplastic pH on the upper side of the leaf is as high as 10.5-11.0, which indicates that alkaline pH induces an increased H+ permeability of the plasmalemma. To study this hypothesis in more detail we investigated the changes in membrane potential and conductance in response to alterations in the external pH from 7 (= control) to 9 or 11 under both light and dark conditions. Departing from the control pH 7 condition, in light and in dark the application of pH 9 resulted in a depolarization of the membrane potential to the Nernst potential of H+. In the light but not in the dark, this depolarization was followed by a repolarization to about -160 mV. The change to pH 9 induced, in light as well as in dark, an increase in membrane conductance. The application of pH 11, which caused a momentary hyper- or depolarization depending on the value at the time pH 11 was applied, brought the membrane potential to around -160 mV. The membrane conductance also increased, in comparison to its value at pH 7, as a result of the application of pH 11, irrespective of the light conditions.  相似文献   

19.
(1) The active transport of Na+ across the turtle bladder epithelial cell layer consists of a passive entry step through a Na+-selective path in the apical membrane and an active extrusion step through Na+ pump-containing path in the basal-lateral membrane together with some back-leakage through the paracellular spaces and tight junctions between the epithelial cells. This hypothesis has now been verified qualitatively and to some extent, quantitatively by the use of an intracellularly-located microelectrode in conjunction with a conventional assembly of extracellularly-located macroelectrodes mainly in short-circuited bladders bathed by Na+-rich Ringer media. Under these conditions, the intracellular potential (Vsc) averaged 38.4 mV with the cell electronegative; the fractional resistance of the apical membrane (?Ra) averaged 0.55; while the concomitant transepithelial parameters, short circuiting current (Isc) and electrical conductance (Gt), average 68.6 μA/cm2 and 0.98 mS/cm2, respectively. (2) The relation between these parameters and the transepithelial flow of Na+ (orIsc) is evoked by blocking Na+ entry into the cell (by the mucosal addition of amiloride or removal of mucosal Na+). Amiloride-induced blockade of the Na+ entry step results in a rapid hyperpolarization of the cell interior during which Vsc = —79.1 mV and ?Ra = 0.92. Isc and Gt (equivalent to the shunt conductance under these conditions) averaged 5 μA/cm2 and 0.35 mS/cm2, respectively. The entire process is reversible on re-admission of Na+ entry into the cell. (3) A slow depolarization of the cell interior in the period of blocked transapical Na+ entry is opposite to that expected from an electroneutral Na+-K+ exchanging pump; but instead is the predictable response of an electrogenic Na+ pump in parallel with a passive K+-selective conductance in the basal-lateral membrane. (4) The electrogenicity concept is substantiated after pretreatment of the bladder with serosal ouabain, which changes the response of Vsc to amiloride (from the aforementioned biphasic response) to a step-function response, attributable mainly to the development of a slowly dissipating K+ diffusion potential across the basallateral membrane. (5) Under open-circuit conditions, the electronegativity of cell to mucosa (Va) is a linear inverse function of the electropositivity of serosa to mucosa (Vt). For Vt ? 100 mV, Va is positive; and for Vt between ?30 and 90 mV, Va is negative.  相似文献   

20.
Summary The cellular mechanisms responsible for rectal acidification in the desert locust, Schistocerca gregaria, were investigated in isolated recta mounted as flat sheets in modified Ussing chambers. Previous studies conducted in the nominal absence of exogenous CO2 and HCO 3 suggested that the acidification was due to a proton-secretory rather than bicarbonate-reabsorptive mechanism (Thomson, R.B., Speight, J.D., Phillips, J.E. 1988. J. Insect Physiol. 34:829–837). This conclusion was confirmed in the present study by demonstrating that metabolic CO2 could not contribute sufficient HCO 3 to the lumen to account for the rates of rectal acidification observed under the nominally CO2/ HCO 3 -free conditions used in these investigations.Rates of luminal acidification (J H +) were completely unaffected by changes in contraluminal pH, but could be progressively reduced (and eventually abolished) by imposition of either transepithelial pH gradients (lumen acid) or transepithelial electrical gradients (lumen positive). Under short-circuit current conditions, the bulk of J H + was not dependent on Na+, K+, Cl,Mg2+, or Ca2+ and was due to a primary electrogenic proton translocating mechanism located on the apical membrane. A small component (10–16%) of J H + measured under these conditions could be attributed to an apical amiloride-inhibitable Na+/H+ exchange mechanism.This work was supported by operating grants to J.E.P. and postgraduate scholarships to R.B.T. from Natural Sciences & Engineering Research Council, Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号