首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recent studies in mice and humans show that the importance of the thymus extends well beyond the initial seeding of the peripheral T-cell pool. Although peripheral homeostasis can maintain T-cell numbers, the thymus is the major, if not the exclusive, source of new T-cell specificities. With age, thymus atrophy dramatically reduces the export of new T cells and predisposes an individual to impaired T-cell function, reduced T-cell immunity, and increased autoimmunity. Thymus atrophy is also the primary obstacle to restoration of the T-cell pool in the aftermath of HIV treatment or lymphoablative therapies. Here, we review thymus T-cell production, with particular attention to the factors that influence thymocyte export, and examine the impact that recent thymic emigrants have on the peripheral pool. In the future, thymic regeneration might become a feasible and potentially powerful approach to rejuvenating a depleted peripheral T-cell pool.  相似文献   

2.
A major underlying cause for aging of the immune system is the structural and functional atrophy of the thymus, and associated decline in T cell genesis. This loss of na?ve T cells reduces adaptive immunity to new stimuli and precipitates a peripheral bias to memory cells against prior antigens. Whilst multiple mechanisms may contribute to this process, the temporal alliance of thymic decline with puberty has implicated a causative role for sex steroids. Accordingly ablation of sex steroids induces profound thymic rejuvenation. Although the thymus retains some, albeit highly limited, function in healthy adults, this is insufficient for resurrecting the T cell pool following cytoablative treatments such as chemo- and radiation-therapy and AIDS. Increased risk of opportunistic infections and cancer relapse or appearance, are a direct consequence. Temporary sex steroid ablation may thus provide a clinically effective means to regenerate the thymus and immune system in immunodeficiency states.  相似文献   

3.
Children with Down syndrome (DS) have low numbers of naive T cells and abnormal thymus development and function. Because next to thymic production, peripheral proliferation greatly contributes to naive T cell generation in healthy children, we examined the cause of reduced naive T cell numbers in children with DS. Compared with aged matched controls, the total number of signal joint TCR excision circles (sjTREC) per ml blood was reduced in DS. Reduced frequencies and absolute numbers of protein tyrosine kinase 7-positive recent thymic emigrants, but similar levels of naive T cell apoptosis and Ag-driven activation in DS, suggested that reduced thymic output and not increased peripheral loss of naive T cells caused the reduced sjTREC numbers. We found no support for defective peripheral generation of naive T cells in DS. In DS the naive T cells responded to IL-7 and, based on Ki-67 expression, had similar proliferation rates as in healthy controls. sjTREC content per naive CD8(+) T cells was not increased, but even decreased, pointing to increased survival or peripheral generation of naive T cells in DS. In conclusion, we show in this study that reduced thymic output, but not reduced peripheral generation nor increased loss of naive T cells, results in the low naive T cell numbers found in DS.  相似文献   

4.
Delayed immune reconstitution in adult recipients of allogeneic hemopoietic stem cell transplantations (HSCT) is related to age-induced thymic atrophy. Overcoming this paucity of T cell function is a major goal of clinical research but in the context of allogeneic transplants, any strategy must not exacerbate graft-vs-host disease (GVHD) yet ideally retain graft-vs-tumor (GVT) effects. We have shown sex steroid ablation reverses thymic atrophy and enhances T cell recovery in aged animals and in congenic bone marrow (BM) transplant but the latter does not have the complications of allogeneic T cell reactivity. We have examined whether sex steroid ablation promoted hemopoietic and T cell recovery following allogeneic HSCT and whether this benefit was negated by enhanced GVHD. BM and thymic cell numbers were significantly increased at 14 and 28 days after HSCT in castrated mice compared with sham-castrated controls. In the thymus, the numbers of donor-derived thymocytes and dendritic cells were significantly increased after HSCT and castration; donor-derived BM precursors and developing B cells were also significantly increased. Importantly, despite restoring T cell function, sex steroid inhibition did not exacerbate the development of GVHD or ameliorate GVT activity. Finally, IL-7 treatment in combination with castration had an additive effect on thymic cellularity following HSCT. These results indicate that sex steroid ablation can profoundly enhance thymic and hemopoietic recovery following allogeneic HSCT without increasing GVHD and maintaining GVT.  相似文献   

5.
When the TCR is formed in the thymus, fragments of DNA are excised from the T cell progenitor chromosome. These TCR rearrangement excision circles (TRECs) are stable, are not replicated in cell division and are therefore most frequent in naive T cells that have recently left the thymus. During life, the average TREC content of peripheral naive T cells decreases between one and two orders of magnitude in humans. It is generally believed that the age-dependent decrease in the production of naive T cells by the thymus is sufficient to explain the decrease in the TREC content. Here, we demonstrate that this decrease in thymic production is required, but it is not sufficient to explain the TREC data. Only if the decrease in thymic output is compensated by homeostasis can one explain the decrease in the TREC content. The homeostatic response can take two forms: when the total number of naive T cells declines, there could be an increase in the renewal rate or an increase of the average cellular lifespan.  相似文献   

6.
The human thymus is required for establishment of the T cell pool in fetal life, but postnatal thymectomy does not lead to immunodeficiency in humans. Because thymectomy in humans is performed for treatment of myasthenia gravis (MG), we have studied patients with MG for effects of thymectomy on peripheral blood (PB) naive (CD45RA(+), CD62L(+)) and memory (CD45RO(+)) T cells. We have also determined the effect of thymectomy on levels of PB cells containing signal joint TCR delta excision circles (TRECs), a molecular marker of thymus emigrants that have divided few times after leaving the thymus. In 17 nonthymectomized and 26 thymectomized MG patients studied at varying times after thymectomy (1 day to 41 years), we found no significant mean difference in PB T cell TREC levels between ages 40 and 80 years. However, both thymectomized and nonthymectomized MG patients had lower PB T cell TREC levels than did age-matched normal subjects (p < 0.0001 for both). These data demonstrated that MG itself or treatment for MG decreased thymopoiesis independent of thymectomy. Next, to control for disease activity and treatment, we prospectively studied 10 MG patients before and from 27 to 517 days after thymectomy. We found that thymectomy decreased CD4 or CD8 T cell TREC concentrations most when thymopoiesis was active before thymectomy (six of six patients), but had little effect in patients when thymopoiesis was minimal (four of four patients). In contrast, there was no significant effect of thymectomy on absolute numbers of naive PB T cells. Thus, in MG, removal of a thymus with active thymopoiesis resulted in a significant fall in PB TREC(+) T cells postthymectomy.  相似文献   

7.
Foxn1Delta/Delta mutants have a block in thymic epithelial cell differentiation at an intermediate progenitor stage, resulting in reduced thymocyte cellularity and blocks at the double-negative and double-positive stages. Whereas naive single-positive thymocytes were reduced >500-fold in the adult Foxn1Delta/Delta thymus, peripheral T cell numbers were reduced only 10-fold. The current data shows that Foxn1Delta/Delta peripheral T cells had increased expression of activation markers and the ability to produce IL-2 and IFN-gamma. These cells acquired this profile immediately after leaving the thymus as early as the newborn stage and maintained high steady-state proliferation in vivo but decreased proliferation in response to TCR stimulation in vitro. Single-positive thymocytes and naive T cells also had constitutively low alphabetaTCR and IL7R expression. These cells also displayed reduced ability to undergo homeostatic proliferation and increased rates of apoptosis. Although the frequency of Foxp3+CD4+CD25+ T cells was normal in Foxn1Delta/Delta mutant mice, these cells failed to have suppressor function, resulting in reduced regulatory T cell activity. Recent data from our laboratory suggest that T cells in the Foxn1Delta/Delta thymus develop from atypical progenitor cells via a noncanonical pathway. Our results suggest that the phenotype of peripheral T cells in Foxn1Delta/Delta mutant mice is the result of atypical progenitor cells developing in an abnormal thymic microenvironment with a deficient TCR and IL7 signaling system.  相似文献   

8.
To examine directly whether a limited number of naive T cells transferred to lymphopenic hosts can truly fill the peripheral naive T cell pool, we compared the expansion and phenotype of naive T cells transferred to three different hosts, namely recombination-activating gene-deficient mice, CD3epsilon-deficient mice, and irradiated normal mice. In all three recipients, the absolute number of recovered cells was much smaller than in normal mice. In addition, transferred naive T cells acquired a memory-like phenotype that remained stable with time. Finally, injected cells were rapidly replaced by host thymic migrants in irradiated normal mice. Only continuous output of naive T cells by the thymus can generate a full compartment of truly naive T cells. Thus, conversion of naive T cells to a memory-like phenotype in lymphopenic hosts is not related to a homeostatic mechanism that fills the peripheral naive T cell pool.  相似文献   

9.
Age-related deterioration in immune function has been recognized in many species. In humans the clinical manifestation of such immune dysfunction is age-related increases in the susceptibility to certain infections and in the incidence of some autoimmune disease and certain cancers. Laboratory investigations reveal age-related changes in the peripheral T cell pool, in the predominant phenotype, cytokine production profiles, signalling function and in replicative ability following stimulus with antigen, mitogens or anti-CD3 antibody. These changes in the properties of peripheral T cells are thought to be causally linked to an age-associated involution in the thymus. Our analysis reveals that thymic involution is due to a change in the thymic microenvironment linked to a reduction in the level of available interleukin 7. Treatment with interleukin 7 leads to a reversal of thymic atrophy with increased thymopoiesis. This provides the potential to reverse the immune dysfunction seen in the peripheral T cell pool by replacing old cells with new output generated in the thymus. Problems to overcome in order for such an experimental therapy to be successful require careful analysis in order to provide an optimal strategy to ensure that new T cell emigrants from the thymus have a broad range of specificities and are able to enter the peripheral T cell pool.  相似文献   

10.
T cell maturation was once thought to occur entirely within the thymus. Now, evidence is mounting that the youngest peripheral T cells in both mice and humans comprise a distinct population from their more mature, yet still naive, counterparts. These cells, termed recent thymic emigrants (RTEs), undergo a process of post-thymic maturation that can be monitored at the levels of cell phenotype and immune function. Understanding this final maturation step in the process of generating useful and safe T cells is of clinical relevance, given that RTEs are over-represented in neonates and in adults recovering from lymphopenia. Post-thymic maturation may function to ensure T cell fitness and self tolerance.  相似文献   

11.
Due to homeostasis total naive T cell numbers remain fairly constant over life despite a gradual involution of the thymus. The contribution of the thymus to maintaining naive T cell pools is typically measured with TCR excision circles (TRECs) that are formed in thymocytes. The mechanisms underlying thymic involution are poorly understood. Some data suggest that thymocytes undergo fewer divisions in old (small) than young (large) thymi, and other data suggest that the number of TRECs per thymocyte is independent of age. If thymic involution were associated with a decreased number of divisions of the thymocytes, this would markedly complicate the interpretation of TREC data. To study this we develop a mathematical model in which the division rate of thymocytes decreases with increasing age. We describe the dilution of TRECs formed during the arrangement of both chains of the TCR by division of thymocytes, recent thymic emigrants, and mature naive T cells. The model behavior is complicated as TREC contents in naive T cells can increase with age due to decreased dilution in the thymus. Because our model is consistent with current data on the effects of age and thymectomy on TRECs in peripheral T cells, we conclude that aging may well affect thymocyte division, which markedly complicates the interpretation of TREC data. It is possible, but more difficult, to let the model be consistent with the rapid changes in alpha and beta TRECs observed shortly after HIV infection.  相似文献   

12.
Analysing T-cell receptor excision circle numbers in healthy individuals we find a marked change in the source of naive T cells before and after 20 years of age. The bulk of the naive T cell pool is sustained primarily from thymic output for individuals younger than 20 years of age whereas proliferation within the naive phenotype is dominant for older individuals. Over 90% of phenotypically naive T cells in middle age are not of direct thymic origin. Moreover, this change in source of naive T cells is accompanied either by an increased death rate of T cells from the thymus or reduced thymic export. Modelling of these processes shows that new naive T cells of a thymic origin have a half-life of approximately 50 days before this change occurs, and that either the life-span of recent thymic emigrants (but not necessarily of all naive cells) decreases approximately threefold in middle age, or thymic production drops by this same amount. The decay rate of T-cell receptor excision circle levels for individuals over 20 years of age is consistent with the decay rate of the productive thymus. Our modelling suggests that at age 25, thymic export is responsible for 20% of naive T-cell production and that this percentage decreases with the 15.7 year half-life of the productive thymus so that by age 55 only 5% of naive production arises from thymic export.  相似文献   

13.
Reciprocal interaction between bone marrow derived lymphoid precursor cells and the thymic environment leads, through a series of developmental events, to the generation of a diverse repertoire of functional T-cells. During thymopoiesis fetal liver or bone marrow derived precursors enter the thymus and develop into mature T-cells in response to cues derived from the environment. The thymic micro-environment provides signals to the lymphoid cells as a result of cell-cell interactions, locally produced cytokines, chemokines and hormones. Developing thymocytes, in turn, influence the thymic stroma to form a supportive micro-environment. Stage-specific signals provide an exquisite balance between cellular proliferation, differentiation, cell survival and death. The result of this intricate signaling concert is the production of the requisite numbers of well educated self-restricted T-cells. Mature T-cells are exported to the peripheral lymphoid organs, where, upon encountering antigen, naive T-cells further mature into effector cells that provide cytolytic or T helper functions. While there are extra-thymic locations for T-cell development, majority of T-cells in peripheral lymphoid organs are thymus derived. In mice and humans, T-cells develop throughout life although the efficacy declines significantly with age. It is not clear if this is a direct consequence of deterioration of the thymic environment by involution, a paucity of bone marrow derived precursors, or both. However, new data clearly shows that the involuted adult thymus retains the ability to generate new T-cells. Recent advances have revealed many components of an exquisitely balanced signaling cascades that regulate cell fate, cellular proliferation and cell death in the thymus. This article describes fundamental features of developing thymocytes and the thymic micro-environment as they relate to the signaling pathways.  相似文献   

14.
The effects of HIV infection upon the thymus and peripheral T cell turnover have been implicated in the pathogenesis of AIDS. In this study, we investigated whether decreased thymic output, increased T cell proliferation, or both can occur in HIV infection. We measured peripheral blood levels of TCR rearrangement excision circles (TREC) and parameters of cell proliferation, including Ki67 expression and ex vivo bromodeoxyuridine incorporation in 22 individuals with early untreated HIV disease and in 15 HIV-infected individuals undergoing temporary interruption of therapy. We found an inverse association between increased T cell proliferation with rapid viral recrudescence and a decrease in TREC levels. However, during early HIV infection, we found that CD45RO-CD27high (naive) CD4+ T cell proliferation did not increase, despite a loss of TREC within naive CD4+ T cells. A possible explanation for this is that decreased thymic output occurs in HIV-infected humans. This suggests that the loss of TREC during HIV infection can arise from a combination of increased T cell proliferation and decreased thymic output, and that both mechanisms can contribute to the perturbations in T cell homeostasis that underlie the pathogenesis of AIDS.  相似文献   

15.
CD4 repopulation can be achieved in T cell-depleted, thymectomized mice grafted with xenogeneic porcine thymus tissue. These CD4 T cells are specifically tolerant of the xenogeneic porcine thymus donor and the recipient, but are positively selected only by porcine MHC. Recent studies suggest that optimal peripheral survival of naive CD4 T cells requires the presence of the same class II MHC in the periphery as that of the thymus in which they were selected. These observations would suggest that T cells selected on porcine thymic MHC would die rapidly in the periphery, where porcine MHC is absent. Persistent CD4 reconstitution achieved in mice grafted with fetal porcine thymus might be due to increased thymic output to compensate for rapid death of T cells in the periphery. Comparison of CD4 T cell decay after removal of porcine or murine thymic grafts ruled out this possibility. No measurable role for peripheral murine class II MHC in maintaining the naive CD4 pool originating in thymic grafts was demonstrable. However, mouse class II MHC supported the conversion to, survival, and/or proliferation of memory-type CD4 cells selected in fetal porcine thymus. Thus, the same MHC as that mediating positive selection in the thymus is not critical for maintenance of the memory CD4 cell pool in the periphery. Our results support the interpretation that xenogeneic thymic transplantation is a feasible strategy to reconstitute CD4 T cells and render recipients tolerant of a xenogeneic donor.  相似文献   

16.
The Ras-mitogen-activated protein kinase (MAPK) pathway is crucial for T cell receptor (TCR) signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3) is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP) domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.  相似文献   

17.
T lymphocytes arise in the thymus and seed to peripheral lymphoid organs as fully functional cells at the time of exit. In humans, the thymus begins to function very early in ontogeny and releases large numbers of T cells before the time of birth. However, the vast majority of developing thymocytes (>95%) die within the thymus as a result of stringent selection processes. Positive selection imposes self-MHC-restriction on thymocytes and dictates the MHC-restricted repertoire of post-thymic T cells. Negative selection results in deletion of autoreactive cells. Both types of selection depend on cell to cell contracts and on the presence of appropriate growth factors which are still largely undetermined. Cell to cell contacts occur between developing thymocytes and cells of the thymic microenvironment (accessory cells), and are mediated by several receptor/ligand interactions which subserve the function of establishing and stabilizing these contacts. Besides MHC-TCR interactions, adhesion molecules are important for thymocyte maturation, selection and activation, and for the export and peripheral homing of mature T cells produced in the thymus. Here we describe a novel integrin involved in thymocyte-thymic epithelial cell interactions.  相似文献   

18.
Efficient reconstitution of the pool of peripheral T cells after hemopoietic stem cell transplantation (HSCT) is dependent on normal thymic function. However, the development of graft-vs-host disease (GVHD) in the context of allogeneic HSCT is associated with injurious effects on thymocyte development. In this study, we examined in models of syngeneic and allogeneic murine HSCT whether actual posttransplant thymic output is accurately reflected by analysis of signal-joint TCR rearrangement excision circles (sjTRECs). Our data demonstrate that the de novo generation of T cells following syngeneic HSCT of T cell-deficient B6.RAG2(-/-) (recombination-activating gene 2(-/-)) mice correlates firmly with an increase of sjTRECs in the thymus and spleen. However, the altered homeostasis of naive peripheral T cells in the presence of GVHD necessitates the combined analysis of cell division in vivo and determinations of sjTREC contents and total sjTREC numbers to draw informative conclusions. From our data, we substantiate that thymic output and peripheral division of newly generated T cells are diminished in the presence of acute GVHD in an experimental radiation/allogeneic HSCT model.  相似文献   

19.
T cells with specificity for self-Ags are normally present in the peripheral blood, and, upon activation, may target tissue Ags and become involved in the pathogenesis of autoimmune processes. In multiple sclerosis, a demyelinating disease of the CNS, it is postulated that inflammatory damage is initiated by CD4+ T cells reactive to myelin Ags. To investigate the potential naive vs memory origin of circulating myelin-reactive cells, we have generated myelin basic protein (MBP)- and tetanus toxoid-specific T cell clones from CD45RA+/RO- and CD45RO+/RA- CD4+ T cell subsets from the peripheral blood of multiple sclerosis patients and controls. Our results show that 1) the response to MBP, different from that to TT, predominantly emerges from the CD45RA+ subset; 2) the reactivity to immunodominant MBP epitopes mostly resides in the CD45RA+ subset; 3) in each individual, the recognition of single MBP epitopes is skewed to either subset, with no overlap in the Ag fine specificity; and 4) in spite of a lower expression of costimulatory and adhesion molecules, CD45RA+ subset-derived clones recognize epitopes with higher functional Ag avidity. These findings point to a central role of the naive CD45RA+ T cell subset as the source for immunodominant, potentially pathogenic effector CD4+ T cell responses in humans.  相似文献   

20.
Infectious disease immunology has largely focused on the effector immune response, changes in the blood and peripheral lymphoid organs of infected individuals, and vaccine development. Studies of the thymus in infected individuals have been neglected, although this is progressively changing. The thymus is a primary lymphoid organ, able to generate mature T cells that eventually colonize secondary lymphoid organs, and is therefore essential for peripheral T cell renewal. Recent data show that normal thymocyte development and export can be altered as a result of an infectious disease. One common feature is the severe atrophy of the infected organ, mainly due to the apoptosis-related depletion of immature CD4+CD8+ thymocytes. Additionally, thymocyte proliferation is frequently diminished. The microenvironmental compartment of the thymus is also affected, particularly in acute infectious diseases, with a densification of the epithelial network and an increase in the deposition of extracellular matrix. In the murine model of Chagas disease, intrathymic chemokine production is also enhanced, and thymocytes from Trypanosoma cruzi-infected mice exhibit greater numbers of cell migration-related receptors for chemokines and extracellular matrix, as well as increased migratory responses to the corresponding ligands. This profile is correlated with the appearance of potentially autoreactive thymus-derived immature CD4+CD8+ T cells in peripheral organs of infected animals. A variety of infectious agents--including viruses, protozoa, and fungi--invade the thymus, raising the hypothesis of the generation of central immunological tolerance for at least some of the infectious agent-derived antigens. It seems clear that the thymus is targeted in a variety of infections, and that such targeting may have consequences on the behavior of peripheral T lymphocytes. In this context, thymus-centered immunotherapeutic approaches potentially represent a new tool for the treatment of severe infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号