首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

2.
The generation of proinflammatory eicosanoids in response to tumor necrosis factor (TNF) involves the activation of cytosolic phospholipase A(2) (cPLA(2)), presumably by phosphorylation through extracellular signal-regulated kinases (ERK). Earlier results had suggested that a pathway involving the p55 TNF receptor (TNF-R55), neutral sphingomyelinase (N-SMase), and c-Raf-1 activates ERK and cPLA(2). We have previously shown that a cytoplasmic region of TNF-R55 distinct from the death domain regulates the activation of N-SMase through binding of the adapter protein FAN. Analysis of embryonal fibroblasts from FAN knockout mice revealed that TNF-induced activation of both ERK and cPLA(2) occurs without involvement of FAN. Furthermore, we provide evidence that the TNF-dependent activation of ERK and cPLA(2) requires the intact death domain of TNF-R55. Finally, we demonstrate that in murine fibroblasts cPLA(2) is phosphorylated in response to TNF solely by ERK, but not by p38 mitogen-activated protein kinase, suggesting a signaling pathway from TNF-R55 via the death domain to ERK and cPLA(2).  相似文献   

3.
Tumor necrosis factor (TNF) is the prototypic member of the TNF ligand family and has a key role in the regulation of inflammatory processes. TNF exerts its functions by interaction with the death domain-containing TNF-receptor 1 (TNF-R1) and the non-death domain-containing TNF-receptor 2 (TNF-R2), both members of a receptor family complementary to the TNF ligand family. Due to the prototypic features of the TNF receptors and their importance for the regulation of inflammation, the signal transduction mechanisms utilized by these receptors have been extensively studied. Several proteins that interact directly or indirectly with the cytoplasmic domains of TNF-R1 and TNF-R2 have been identified in the recent years giving ideas how these receptors are connected to the apoptotic pathway and the signaling cascades leading to activation of NF-kappaB and JNK. Of special interest are TNF receptor-associated factor (TRAF) 1 and 2, which defines a novel group of adaptor proteins involved in signal transduction by most members of the TNF receptor family, of IL-1 receptor and IL-17 receptor as well as some members of the TOLL-like receptor family. TRAF 2 is currently the best-characterized TRAF family member, having a key role in mediating TNF-R1-induced activation of NF-kappaB and JNK. Moreover, recent studies suggest that TRAF 2 represents an integration point for pro- and antiapoptotic signals. This review focuses on the molecular mechanisms that underlay signal initiation by TNF-R1 and TNF-R2, with particular consideration of the role of TRAF 2, and highlights the importance of this molecule for the integration of such antagonizing pathways as death induction and NF-kappaB-mediated surviving signals.  相似文献   

4.
5.
Tumor necrosis factor (TNF)-alpha-induced hepatocyte apoptosis is implicated in a wide range of liver diseases including viral hepatitis, alcoholic hepatitis, ischemia/reperfusion liver injury, and fulminant hepatic failure. TNF-alpha exerts a variety of effects that are mediated mainly by TNF-receptor 1 (TNF-R1) in cell death. The activation of TNF-R1 leads to the activation of multiple apoptotic pathways involving the activation of the pro-death Bcl-2 family proteins, reactive oxygen species, C-Jun NH2-terminal kinase, cathepsin B, acidic sphingomyelinase and neutral sphingomyelinase. These pathways are closely interlinked and mainly act on mitochondria, which release the apoptogenic factors and other events, resulting in apoptosis. This article reviews the recent progress in the molecular mechanisms of TNF-alpha-induced apoptosis in hepatocytes, and discusses how these molecular findings are shaping our understanding of the pathogenesis of liver diseases and our strategy to develop novel therapeutics.  相似文献   

6.
To investigate CD40 signaling complex formation in living cells, we used green fluorescent protein (GFP)-tagged CD40 signaling intermediates and confocal life imaging. The majority of cytoplasmic TRAF2-GFP and, to a lesser extent, TRAF3-GFP, but not TRAF1-GFP or TRAF4-GFP, translocated into CD40 signaling complexes within a few minutes after CD40 triggering with the CD40 ligand. The inhibitor of apoptosis proteins cIAP1 and cIAP2 were also recruited by TRAF2 to sites of CD40 signaling. An excess of TRAF2 allowed recruitment of TRAF1-GFP to sites of CD40 signaling, whereas an excess of TRAF1 abrogated the interaction of TRAF2 and CD40. Overexpression of TRAF1, however, had no effect on the interaction of TRADD and TRAF2, known to be important for tumor necrosis factor receptor 1 (TNF-R1)-mediated NF-kappaB activation. Accordingly, TRAF1 inhibited CD40-dependent but not TNF-R1-dependent NF-kappaB activation. Moreover, down-regulation of TRAF1 with small interfering RNAs enhanced CD40/CD40 ligand-induced NF-kappaB activation but showed no effect on TNF signaling. Because of the trimeric organization of TRAF proteins, we propose that the stoichiometry of TRAF1-TRAF2 heteromeric complexes ((TRAF2)2-TRAF1 versus TRAF2-(TRAF1)2) determines their capability to mediate CD40 signaling but has no major effect on TNF signaling.  相似文献   

7.
Phosphorylation of murine CD120a by p42(mapk/erk2) has been shown to inhibit its ability to initiate apoptosis while preserving signaling events such as NF-kappaB activation. Therefore, we sought to determine if p42(mapk/erk2) was also capable of phosphorylating additional human death receptors within the TNF receptor superfamily. These studies showed that CD120a and DR3 are significantly phosphorylated by p42(mapk/erk2) but Fas, DR4 and DR5 are not. Additionally, we demonstrated that (i) the p42(mapk/erk2)-dependent phosphorylation of CD120a and DR3 occurred on Ser and Thr residues, (ii) p42(mapk/erk2) phosphorylated residues located in the membrane proximal regions but not the death domains of CD120a and DR3, (iii) Ser 253 is a preferred site of phosphorylation on CD120a, and (iv) the p42(mapk/erk2)-dependent phosphorylation of the DR3 cytoplasmic domain occurred exclusively at non-p42/44(mapk/erk2/1) consensus sites. These findings suggest that human death receptors segregate into two groups along lines of phylogeny with respect to Ser/Thr phosphorylation by p42(mapk/erk2).  相似文献   

8.
Fas (CD95) is a member of the tumor necrosis factor (TNF) receptor superfamily and plays a crucial role in the induction of apoptosis. However, like TNF, Fas can induce nonapoptotic signaling pathways. We previously demonstrated that mice lacking Fas specifically in adipocytes are partly protected from diet-induced insulin resistance, potentially via decreased delivery of FAs to the liver, as manifested by lower total liver ceramide content. In the present study, we aimed to delineate the signaling pathway involved in Fas-mediated adipocyte lipid mobilization. Treatment of differentiated 3T3-L1 adipocytes with membrane-bound Fas ligand (FasL) significantly increased lipolysis after 12 h without inducing apoptosis. In parallel, Fas activation increased phosphorylation of ERK1/2, and FasL-induced lipolysis was blunted in the presence of the ERK-inhibitor U0126 or in ERK1/2-depleted adipocytes. Furthermore, Fas activation increased phosphorylation of the Ca2+/calmodulin-dependent protein kinases II (CaMKII), and blocking of the CaMKII-pathway (either by the Ca2+ chelator BAPTA or by the CaMKII inhibitor KN62) blunted FasL-induced ERK1/2 phosphorylation and glycerol release. In conclusion, we propose a novel role for CaMKII in promoting lipolysis in adipocytes.  相似文献   

9.
10.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.  相似文献   

11.
12.
Engagement of antigen receptors on immature B cells induces apoptosis, while at the mature stage, it stimulates cell activation and proliferation. The difference in B cell receptor (BCR)-mediated signaling pathways regulating death or survival of B cells is not fully understood. We aimed to characterize the pathway leading to BCR-driven apoptosis. Transitional immature B cells were obtained from the spleen of sublethally irradiated and auto-reconstituted mice. We have detected a short-lived BCR-driven activation of mitogen-activated protein kinases (ERK1/2 and p38 MAPK) and Akt/PKB in transitional immature B cells that correlated with the lack of c-Fos expression, reduced phosphorylation of Akt substrates and a susceptibility for apoptosis. Simultaneous signaling through BCR and CD40 protected immature B cells from apoptosis, however, without inducing Bcl-2 expression. The BCR-induced apoptosis of immature B cells is a result of the collapse of mitochondrial membrane potential and the subsequent activation of caspase-3.  相似文献   

13.
14.
15.
16.
Treatment with the anti-leukemic drug arsenic trioxide (As(2)O(3), 1-4 microM) sensitizes U937 promonocytes and other human myeloid leukemia cell lines (HL60, NB4) to apoptosis induction by TNFalpha. As(2)O(3) plus TNFalpha increases TNF receptor type 1 (TNF-R1) expression, decreases c-FLIP(L) expression, and causes caspase-8 and Bid activation, and apoptosis is reduced by anti-TNF-R1 neutralizing antibody and caspase-8 inhibitor. The treatment also causes Bax translocation to mitochondria, cytochrome c and Omi/HtrA2 release from mitochondria, XIAP down-regulation, and caspase-9 and caspase-3 activation. Bcl-2 over-expression inhibits cytochrome c release and apoptosis, and also prevents c-FLIP(L) down-regulation and caspase-8 activation, but not TNF-R1 over-expression. As(2)O(3) does not affect Akt phosphorylation/activation or intracellular GSH content, nor prevents the TNFalpha-provoked stimulation of p65-NF-kappaB translocation to the nucleus and the increase in NF-kappaB binding activity. Treatments with TNFalpha alone or with As(2)O(3) plus TNFalpha cause TNF-R1-mediated p38-MAPK phosphorylation/activation. P38-MAPK-specific inhibitors attenuate the As(2)O(3) plus TNFalpha-provoked activation of caspase-8/Bid, Bax translocation, cytochrome c release, and apoptosis induction. In conclusion, the sensitization by As(2)O(3) to TNFalpha-induced apoptosis in promonocytic leukemia cells is an Akt/NF-kappaB-independent, p38-MAPK-regulated process, which involves the interplay of both the receptor-mediated and mitochondrial executioner pathways.  相似文献   

17.
The heat shock protein 90 (Hsp-90) inhibitor, geldanamycin, and the proteasome inhibitor, MG-132, both inhibited tumor necrosis factor receptor 1 (TNF-R1)- but not TRAIL-induced apoptosis in Kym-1 cells, suggesting that TNF-R1-induced cell death is dependent on NF-kappaB activation in this model. Triggering of TNF-R1 by agonistic antibodies led to cell-type specific induction of endogenous TNF and apoptosis, the latter of which was abrogated by neutralizing TNF specific antibodies. TNF-R1-stimulated cells expressed TNF mainly in a cell-associated form, suggesting that the endogenously produced TNF act in its membrane-bound form. Geldanamycin failed to inhibit apoptosis induction by a combination of agonistic TNF-R1- and TNF-R2-specific antibodies, indicating that both TNF receptors co-operate in TNF-R1-triggered apoptosis in Kym-1 cells. Thus, TNF-R1 stimulation can elicit a strong and rapid apoptotic response via induction of membrane TNF and subsequent cooperation of TNF-R1 and TNF-R2. Moreover, we give evidence that this mechanism circumvents the need of the prolonged presence of exogenous soluble TNF for TNF-R1-mediated apoptosis induction.  相似文献   

18.
CD40, a member of the tumor necrosis factor receptor superfamily, is frequently expressed in carcinomas where its stimulation results in induction of apoptosis when de novo protein synthesis is inhibited. The requirement of protein synthesis inhibition for efficient killing suggests that CD40 transduces potent survival signals capable of suppressing its pro-apoptotic effects. We have found that inhibition of CD40 signaling on the phosphatidylinositol 3-kinase (PI3K) and ERK MAPK but not on the p38 MAPK axis disrupts this balance and sensitizes carcinoma cells to CD40-mediated cell death. The CD40-mediated PI3K and ERK activities were found to converge on the regulation of protein synthesis in carcinoma cells via a pathway involving the activation of p90 ribosomal S6 kinase (p90Rsk) and p70S6 kinases, upstream of the translation elongation factor eEF2. In addition, CD40 ligation was found to mediate a PI3K- and mammalian target of rapamycin (mTOR)-dependent phosphorylation of 4E-BP1 and its subsequent dissociation from the mRNA cap-binding protein eIF4E as well as an ERK-dependent phosphorylation of eIF4E, thus promoting translation initiation. Concomitantly, the antiapoptotic protein cFLIP was found to be induced in CD40 ligand-stimulated carcinoma cells in a PI3K-, ERK-, and mammalian target of rapamycin (mTOR)-dependent manner and down-regulation of cFLIPS expression sensitized to CD40-mediated carcinoma cell death. These data underline the significance of the PI3K and ERK pathways in controlling the balance between CD40-mediated survival and death signals through the regulation of the protein synthesis machinery. Pharmacological agents that target this machinery or its upstream kinases could, therefore, be exploited for CD40-based tumor therapy.  相似文献   

19.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

20.
Tumor necrosis factor (TNF) exists both as a membrane-integrated type II precursor protein and a soluble cytokine that have different bioactivities on TNFR2 (CD120b) but not on TNFR1 (CD120a). To identify the molecular basis of this disparity, we have investigated receptor chimeras comprising the cytoplasmic part of Fas (CD95) and the extracellular domains of the two TNF receptors. The membrane form of TNF, but not its soluble form, was capable of inducing apoptosis as well as activation of c-Jun N-terminal kinase and NF-kappaB via the TNFR2-derived chimera. In contrast, the TNFR1-Fas chimera displayed strong responsiveness to both TNF forms. This pattern of responsiveness is identical to that of wild type TNF receptors, demonstrating that the underlying mechanisms are independent of the particular type of the intracellular signaling machinery and rather are controlled upstream of the intracellular domain. We further demonstrate that the signaling strength induced by a given ligand/receptor interaction is regulated at the level of adaptor protein recruitment, as shown for FADD, caspase-8, and TRAF2. Since both incidents, strong signaling and robust adapter protein recruitment, are paralleled by a high stability of individual ligand-receptor complexes, we propose that half-lives of individual ligand-receptor complexes control signaling at the level of adaptor protein recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号