首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of two enantiomeric fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. (-)-D-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 [D-2,2-F2-Ins(1,4,5)P3] was a full agonist [EC50 0.21 microM] and slightly less potent than D-Ins(1,4,5)P3 [EC50 0.13 microM]. (+)-L-2,2-F2Ins(1,4,5)P3 was a very poor agonist, confirming the stereospecificity of the Ins(1,4,5)P3 receptor. D-2,2-F2-Ins(1,4,5)P3 mobilized Ca2+ with broadly similar kinetics to Ins(1,4,5)P3 and was a substrate for Ins(1,4,5)P3 3-kinase inhibiting Ins(1,4,5)P3 phosphorylation (apparent Ki = 10.2 microM) but was recognised less well than Ins(1,4,5)P3. L-2,2-F2-Ins(1,4,5)P3 was a potent competitive inhibitor of 3-kinase (Ki = 11.9 microM). Whereas D-2,2-F2-Ins(1,4,5)P3 was a good substrate for Ins(1,4,5)P3 5-phosphatase, L-2,2-F2Ins(1,4,5)P3 was a relatively potent inhibitor (Ki = 19.0 microM).  相似文献   

2.
A myo-inositol D-3 hydroxykinase activity in Dictyostelium.   总被引:1,自引:0,他引:1       下载免费PDF全文
A soluble ATP-dependent enzyme which phosphorylates myo-inositol has been characterized in Dictyostelium. The myo-inositol kinase activity was partially purified from amoebae by chromatography on DEAE-Sepharose and phenyl-Sepharose columns. The product of both the partially purified activity and of a crude cytosolic fraction was myo-inositol 3-phosphate. The partially purified preparations of myo-inositol kinase (a) possessed a Km for myo-inositol of 120 microM (in the presence of 5 mM-ATP) and for ATP of 125 microM (in the presence of 1 microM-myo-inositol), (b) did not recognize allo-, epi-, muco-, neo-, scyllo-, 1 D-chiro or 1 L-chiro-inositol as substrates, (c) were competitively inhibited by three naturally occurring analogues of myo-inositol: 1 L-chiro-inositol (Ki 49.5 +/- 0.7 microM: the structural equivalent of myo-inositol, except that the D-3 hydroxy moiety is axial), D-3-deoxy-myo-inositol [Ki 103 +/- 1 microM: (-)-viburnitol], and sequoyitol (Ki 271 +/- 7 microM; unlike 1 L-chiro-inositol and D-3-deoxy-myo-inositol, this was a substrate for the kinase), and finally (d) were apparently non-competitively inhibited by myo-inositol 3-phosphate. The product of myo-inositol kinase could be detected in intact amoebae and was a substrate for the first in a series of inositol polyphosphate kinases present in Dictyostelium which ultimately yield myo-inositol hexakisphosphate. The activity of myo-inositol D-3-hydroxykinase in Dictyostelium lysates showed evidence of developmental regulation.  相似文献   

3.
Metabolism of synthetic inositol trisphosphate analogs   总被引:2,自引:0,他引:2  
A series of synthetic analogs was employed to explore structure-activity relationships in the metabolism of the second messenger inositol trisphosphate (IP3) in vascular tissue. Cytosolic IP3-5-phosphatase activity was purified approximately 240-fold from bovine aorta. All synthetic analogs tested were apparent competitive inhibitors of the 5-phosphatase activity. The order of potency was DL-1,3,4,5-IP3 greater than D-1,4,5-IP3 greater than DL-1,3,4-IP3 greater than L-1,4,5-IP3 greater than 1,3,5-IP3 greater than DL-6-methoxy-1,4,5-IP3 greater than DL-2,4,5-IP3 greater than DL-1,2,4-cyclohexane-P3. The least potent analogs had Ki values only 11 times higher than the apparent Km of the substrate D-1,4,5-[3H]IP3. However, only three synthetic compounds, DL-1,3,4,5-IP4, D-1,4,5-IP3, and DL-2,4,5-IP3, could serve as substrates for the 5-phosphatase. IP3 kinase activity in the same tissue exhibited considerably more selectivity with respect to inhibition by IP3 analogs. D-1,4,5-IP3 was about 30 times more potent than DL-1,3,4,5-IP4 and 100-1000 times more potent than the other compounds tested. The function of the IP3 receptor was evaluated by measuring labeled calcium mobilization in permeabilized bovine aortic smooth muscle cells in culture. While all analogs tested were full agonists, vast differences in potency were observed. D-1,4,5-IP3 was about 30 times more potent than DL-2,4,5-IP3 and 100-2000 times more potent than the other analogs tested. The results suggest that IP3-5-phosphatase activity is relatively nonselective in the binding of inositol polyphosphates, while IP3 kinase activity and the IP3 receptor exhibit great selectivity in the recognition of these compounds.  相似文献   

4.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

5.
Three myo-inositol tetrakisphosphate analogues were synthesised based upon myo-inositol 1,3,4,6-tetrakisphosphate: 2,5-di-O-methyl myo-inositol-1,3,4,6-tetrakisphosphate 19 and its phosphorothioate derivative 22, together with myo-inositol 1,3,4,6 tetrakisphosphorothioate 25. These compounds were prepared by phosphitylating 2,5-di-O-methyl-myo-inositol and 2,5-di-O-benzyl-myo-inositol followed by oxidation with t-butylhydroperoxide or sulfoxidation at room temperature using sulfur in a mixed solvent of DMF and pyridine. Sulfoxidation was complete within 15 min; however, without DMF, the reaction was much slower, and required overnight. When evaluated against Ins(1,4,5)P(3) 5-phosphatase, 3-kinase and for Ca(2+) release at the Ins(1,4,5)P(3) receptor, only weak activity was observed for Ca(2+) release. 22 and 25 are potent 5-phosphatase inhibitors and 25 is a moderate inhibitor of 3-kinase. Thus, we have synthesised potent enzyme inhibitors, which do not mobilise Ca(2+) and devised conditions for quick, clean and inexpensive sulfoxidation of inositol polyphosphite intermediates.  相似文献   

6.
A series of DL-inositol 1,4,5-trisphosphate (IP3) analogs, with a bulky substitutent on the 2nd carbon of the inositol ring, has been synthesized. These compounds exert biological activities with only minor reduction in potency, in several assay systems (Hirata, M., Watanabe, Y., Ishimatsu, T., Ikebe, T., Kimura, Y., Yamaguchi, K., Ozaki, S., and Koga, T. (1989) J. Biol. Chem. 264, 20303-20308). Two analogs with aminocyclohexanecarbonyl (designated as analog 206) or aminobenzoyl group (analog 209) were separated into individual optical isomers and examined for stereospecificity in recognition by IP3-5-phosphatase, IP3-3-kinase and IP3 binding activity. IP3-5-phosphatase activity of erythrocyte ghosts was competitively inhibited by L-209 with a lower Ki value than D-IP3, but with a higher Ki value by L-206. D-Isomers of both analogs at 100 microM failed to inhibit the hydrolysis of D-[3H]IP3. On the other hand, D-isomers but not L-isomers of both analogs were as potent as D-IP3 in the recognition by IP3-3-kinase of rat brain cytosol and only the D-isomer of analog 206 could serve as substrate for the kinase. Also D-isomers of both analogs were equipotent to D-IP3 in displacing [3H]IP3 binding to rat cerebellum microsomes. These observations suggest that the IP3 analogs we synthesized are stereospecifically recognized by three IP3-recognizable proteins, but the phosphatase recognizes opposite isomers. Such being the case, the second hydroxyl group of D-IP3 may be involved in the recognition by IP3-5-phosphatase, but not by IP3-3-kinase and binding sites.  相似文献   

7.
The ability of two fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. DL-2-deoxy-2-fluoro-scyllo-Ins(1,4,5)P3 (2F-Ins(1,4,5)P3) and DL-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 (2,2-F2-Ins(1,4,5)P3) were full agonists (EC50s 0.77 and 0.41 microM respectively) and slightly less potent than D-Ins(1,4,5)P3 (EC50 0.13 microM), indicating that the axial 2-hydroxyl group of Ins(1,4,5)P3 is relatively unimportant in receptor binding and stimulation of Ca2+ release. Both analogues mobilized Ca2+ with broadly similar kinetics and were substrates for Ins(1,4,5)P3 3-kinase but, qualitatively, were slightly poorer than Ins(1,4,5)P3. 2F-Ins(1,4,5)P3 was a weak substrate for Ins(1,4,5)P3 5-phosphatase but 2,2-F2-Ins(1,4,5)P3 was apparently not hydrolysed by this enzyme, although it inhibited its activity potently (Ki = 26 microM).  相似文献   

8.
The activation of phospholipase C leads to the formation of both I(1,4,5)P(3) and diacylglycerol (DAG). I(1,4,5)P(3) can be metabolized by dephosphorylation catalyzed by Type I I(1,4,5)P(3) 5-phosphatase and by enzymatic phosphorylation to various inositol phosphates. This last step is catalyzed by three mammalian isoenzymes that specifically phosphorylate the 3-phosphate position of the inositol ring Itpka, Itpkb and Itpkc and a less specific enzyme Ipmk (or inositol multikinase) that phosphorylates I(1,4,5)P(3) at the D-3 and D-6 positions. This study was performed in mice cells in order to understand the synthetic pathway of IP5 and IP6 following PLC stimulation and possible link with Itpk activity. Mouse embryonic fibroblasts (MEF) were prepared from Itpkb(-/-) Itpkc(-/-) mice. Western blot and RT-PCR analysis show that the cells do not express Itpka. In contrast, they do express Ipmk. The cells still produce IP5 and IP6. Our data show that the absence of expression of the three isoenzymes of Itpk does not prevent the formation of IP5 and IP6, at least in mouse embryonic fibroblasts. The nuclear Ipmk plays therefore a critical role in the metabolism of I(1,4,5)P(3) and production of highly phosphorylated IP5 and IP6.  相似文献   

9.
K Duncan  C T Walsh 《Biochemistry》1988,27(10):3709-3714
In Salmonella typhimurium, D-alanine:D-alanine ligase (ADP) (EC 6.3.2.4) is the second enzyme in the three enzyme D-alanine branch pathway of peptidoglycan biosynthesis. The interaction of this enzyme with a possible transition-state analogue, the (aminoalkyl)phosphinate D-3-[(1-aminoethyl)phosphinyl]-2-heptylpropionic acid [Parsons et al. (1987) Abstracts of Papers, 193rd National Meeting of the American Chemical Society, Denver, CO, MEDI 63, American Chemical Society, Washington, DC], has been studied. This compound is a potent active site directed inhibitor and is competitive with D-alanine (Ki = 1.2 microM); it exhibits time-dependent inhibition in the presence of ATP. Kinetic analysis revealed a rapid onset of steady-state inhibition (kon = 1.35 X 10(4) M-1 s-1) followed by slow dissociation of inhibitory complex(es) with a half-life of 8.2 h. The inhibitory complex was shown to consist of E...I...ATP in equilibrium with E...I, Pi, and ADP. Similar time-dependent inhibition was also observed with D-(1-aminoethyl)phosphonic acid (D-Ala-P) (Ki = 0.5 mM; kon = 27 M-1 s-1; t1/2 for regain = 1.73 min) but not with D-(1-aminoethyl)phosphinic acid, which behaved as a simple competitive inhibitor (Ki = 0.4 mM). The mechanism of inhibition is discussed in the light of the precedents of glutamine synthase inhibition by methionine sulfoximine and phosphinothricin.  相似文献   

10.
Among pyrimidine derivatives, we found that 5-fluorouracil potently inhibited purified rat liver D-3-aminoisobutyrate-pyruvate aminotransferase, whereas 5-fluorouridine did so to a much lesser extent. 5-Fluorouracil acted as a competitive inhibitor against beta-alanine with a Ki of 56 microM, and was uncompetitive against pyruvic acid, with a Ki of 73 microM. alpha-Fluoro-beta-alanine, a metabolite of 5-fluorouracil, was also a competitive inhibitor with respect to beta-alanine with a Ki of 8.0 mM. 5-Fluorouracil acted also as a competitive inhibitor of 4-aminobutyrate aminotransferase with respect to beta-alanine with a Ki value of 1.9 mM, and was uncompetitive against 2-oxoglutaric acid, with a Ki of 1.8 mM.  相似文献   

11.
The effect of the guanine nucleotide GTP on Ca2+ release from the endoplasmic reticulum of digitonin-permeabilized islets was investigated. maximal and half-maximal Ca2+ release were observed at 5 microM- and 2.5 microM-GTP respectively. GTP caused a rapid release of Ca2+ from the endoplasmic reticulum, which was complete within 1 min. GTP-induced Ca2+ release was structurally specific and required the hydrolysis of GTP. The combination of maximal concentrations of GTP (10 microM) and myo-inositol 1,4,5-trisphosphate (IP3) (10 microM) resulted in an additive effect on Ca2+ release from the endoplasmic reticulum. GDP (100 microM), which inhibits GTP-induced Ca2+ release, did not affect IP3-induced Ca2+ release. Furthermore, GTP-induced Ca2+ release was not independent on submicromolar free Ca2+ concentrations, unlike IP3-induced Ca2+ release. These observations suggest that mechanistically GTP-induced Ca2+ release is different from IP3-induced Ca2+ release from the endoplasmic reticulum.  相似文献   

12.
Inositol-1,4,5-trisphosphate 3-kinases (IP3K) A, B, and C as well as inositol polyphosphate multikinase (IPMK) catalyze the first step in the formation of the higher phosphorylated inositols InsP5 and InsP6 by metabolizing Ins(1,4,5)P3 to Ins(1,3,4,5)P4. In order to clarify the special role of these InsP3 phosphorylating enzymes and of subsequent anabolic inositol phosphate reactions, a search was conducted for potent enzyme inhibitors starting with a fully active IP3K-A catalytic domain. Seven polyphenolic compounds could be identified as potent inhibitors with IC50 < 200 nM (IC50 given): ellagic acid (36 nM), gossypol (58 nM), (-)-epicatechin-3-gallate (94 nM), (-)-epigallocatechin-3-gallate (EGCG, 120 nM), aurintricarboxylic acid (ATA, 150 nM), hypericin (170 nM), and quercetin (180 nM). All inhibitors displayed a mixed-type inhibition with respect to ATP and a non-competitive inhibition with respect to Ins(1,4,5)P3. Examination of these inhibitors toward IP3K-A, -B, and -C and IPMK from mammals revealed that ATA potently inhibits all kinases while the other inhibitors do not markedly affect IPMK but differentially inhibit IP3K isoforms. We identified chlorogenic acid as a specific IPMK inhibitor whereas the flavonoids myricetin, 3',4',7,8-tetrahydroxyflavone and EGCG inhibit preferentially IP3K-A and IP3K-C. Mutagenesis studies revealed that both the calmodulin binding and the ATP [corrected] binding domain in IP3K are involved in inhibitor binding. Their absence in IPMK and the presence of a unique insertion in IPMK were found to be important for selectivity differences from IP3K. The fact that all identified IP3K and IPMK inhibitors have been reported as antiproliferative agents and that IP3Ks or IPMK often are the best binding targets deserves further investigation concerning their antitumor potential.  相似文献   

13.
Methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclodehydrase (cyclo-ligase) (ADP-forming) EC 6.3.3.2) catalyzes the ATP- and Mg2+-dependent transformation of 5-formyltetrahydrofolate (leucovorin) to 5,10-methenyltetrahydrofolate. The enzyme has been purified 49,000-fold from human liver by a two-column procedure with Blue Sepharose followed by folinate-Sepharose chromatography. It appears as a single band both on SDS-polyacrylamide gel electrophoresis (Mr 27,000) and on isoelectric focusing (pI = 7.0) and is monomeric, with a molecular weight of 27,000 on gel filtration. Initial-velocity studies suggest that the enzyme catalyzes a sequential mechanism and at 30 degrees C and pH 6.0 the turnover number is 1000 min-1. The enzyme has a higher affinity for its pentaglutamate substrate (Km = 0.6 microM) than for the monoglutamate (Km = 2 microM). The antifolate methotrexate has no inhibitory effect at concentrations up to 350 microM, while methotrexate pentaglutamate is a competitive inhibitor with a Ki = 15 microM. Similarly, dihydrofolate monoglutamate is a weak inhibitor with a Ki = 50 microM, while the pentaglutamate is a potent competitive inhibitor with a Ki of 3.8 microM. Thus, dihydrofolate and methotrexate pentaglutamates could regulate enzyme activity and help explain why leucovorin fails to rescue cells from high concentrations of methotrexate.  相似文献   

14.
The pregnene derivative, 4-pregnene-3-one-20 beta-carboxaldehyde (22-A) was evaluated as an inhibitor of 17 alpha-hydroxylase/C17,20-lyase in rat testicular microsomes and of 5 alpha-reductase in human prostatic homogenates. The effect of the compound in vivo was studied in adult male rats. The 22-A demonstrated potent and competitive inhibition of 17 alpha-hydroxylase and C17,20-lyase with Ki values 8.48 and 0.41 microM, respectively, significantly below the Km values for these two enzymes (33.75 and 4.55 microM). This compound also showed potent inhibition of 5 alpha-reductase with a Ki value of 15.6 nM (Km for this enzyme is 50 nM). By comparison, ketoconazole, a currently studied 17 alpha-hydroxylase/C17,20-lyase inhibitor for the treatment of prostatic cancer, showed less potent inhibition of 17 alpha-hydroxylase (Ki 39.5 microM) and C17,20-lyase (Ki 3.6 microM) and did not inhibit 5 alpha-reductase. Progesterone which has been reported to inhibit the 17 alpha-hydroxylase/C17,20-lyase, did not significantly reduce the production of testosterone by rat testes in vitro in comparison to controls, while the same concentration of 22-A demonstrated a 42% reduction of testosterone biosynthesis. When the adult male rats were injected s.c. with 22-A at 50 mg/day/kg for a 2 week period, the testosterone concentrations in the rat sera were significantly lower than control values (P less than 0.05), whereas serum corticosterone levels did not change. These results suggest that 22-A is a selective potent inhibitor for 17 alpha-hydroxylase and C17,20-lyase, but is more potent for the C17,20-lyase. The compound also inhibits 5 alpha-reductase, and therefore may reduce biosynthesis of testosterone and dihydrotestosterone effectively. Thus, 22-A may be useful in the treatment of problems associated with the androgen excess and prostatic cancer.  相似文献   

15.
In Pseudomonas aeruginosa the initial enzyme of aromatic amino acid biosynthesis, 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase, has been known to be subject to feedback inhibition by a metabolite in each of the three major pathway branchlets. Thus, an apparent balanced multieffector control is mediated by L-tyrosine, by L-tryptophan, and phenylpyruvate. We have now resolved DAHP synthase into two distinctive regulatory isozymes, herein denoted DAHP synthase-tyr (Mr = 137,000) and DAHP synthase-trp (Mr = 175,000). DAHP synthase-tyr comprises greater than 90% of the total activity. L-Tyrosine was found to be a potent effector, inhibiting competitively with respect to both phosphoenolpyruvate (Ki = 23 microM) and erythrose 4-phosphate (Ki = 23 microM). Phenylpyruvate was a less effective competitive inhibitor: phosphoenolpyruvate (Ki = 2.55 mM) and erythrose 4-phosphate (Ki = 1.35 mM). DAHP synthase-trp was found to be inhibited noncompetitively by L-tryptophan with respect to phosphoenolpyruvate (Ki = 40 microM) and competitively with respect to erythrose 4-phosphate (Ki = 5 microM). Chorismate was a relatively weak competitive inhibitor: phosphoenolpyruvate (Ki = 1.35 mM) and erythrose 4-phosphate (Ki = 2.25 mM). Thus, each isozyme is strongly inhibited by an amino acid end product and weakly inhibited by an intermediary metabolite.  相似文献   

16.
myo-Inositol-1-phosphatase has been partially purified from bovine brain. The enzyme has a molecular weight of about 58,000. Both L-myo-inositol 1-phosphate and D-myo-inositol 1-phosphate are hydrolyzed by the enzyme as well as (-)-chiro-inositol 3-phosphate and 2'-AMP. Triphosphoinositide is not a substrate. The phosphatase is completely dependent on Mg2+, which has a Km of 1 mM. Calcium and manganese ions are competitive inhibitors of Mg2+ binding with Ki values of 18 microM and 2 microM, respectively. Lithium chloride inhibits the hydrolysis of both L- and D-myo-inositol 1-phosphate to the extent of 50% at a concentration of 0.8 mM. The phosphatase from testis is similarly inhibited by lithium. Lithium ion is a noncompetitive inhibitor of Mg2+ binding and an uncompetitive inhibitor of myo-inositol 1-phosphate binding. Because lithium chloride administration elicits both an increase in the levels of myo-inositol 1-phosphate and a decrease in the levels of myo-inositol in rat brain (Allison, 1978), and because these actions are blocked by anticholinergic agents, we examined the effects of cholinergic agonists and antagonists on the enzyme and found none. The possibility that the inhibition of this enzyme by lithium ion is related to the pharmacological actions of lithium is discussed.  相似文献   

17.
Ethanol-induced pseudohyphal development in the cells of Candida tropicalis Pk233 was accompanied by the transient accumulation of inositol 1,4,5-trisphosphate (IP3) that occurred at an early growth stage. The concomitant addition of myo-inositol prevented the activation of IP3 accumulation and cancelled pseudohyphal development in the presence of ethanol. The addition of a specific phospholipase C inhibitor, U73 122, inhibited ethanol-induced pseudohyphal transition at the concentrations of subinhibitory levels of cell growth. Pseudohyphal development was also induced by the Ca2+ ionophore, A23 187 in the absence of ethanol. The effect of A23 187 on the development of pseudohyphae was little influenced by myo-inositol, but stimulated by concomitant addition of 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ethanol activated phospholipase C in competition with myo-inositol, and the resulting IP3-Ca2+ and protein kinase C pathways of PI signal transduction may work in pseudohyphal transition.  相似文献   

18.
Methenyltetrahydrofolate synthetase (EC 6.3.3.2) catalyzes the irreversible ATP and Mg2+-dependent transformation of 5-formyltetrahydrofolate (N5-HCO-H4-pteroylglutamic acid (PteGlu] to 5,10-methenyltetrahydrofolate. The physiological function of this reaction remains unknown even though it is potentially involved in the intracellular metabolism of the large doses of N5-HCO-H4-PteGlu (leucovorin) administered to cancer patients. We have tried to elucidate methenyltetrahydrofolate synthetase's physiological role by examining the consequences of its inhibition in MCF-7 human breast cancer cells by the folate analog 5-formyltetrahydrohomofolate (fTHHF), a potent competitive inhibitor with a Ki of 1.4 microM. fTHHF inhibited MCF-7 cell growth with an IC50 of 2.0 microM during 72-h exposures, and this effect was fully reversible by hypoxanthine but not thymidine, indicating specific inhibition of de novo purine synthesis. A correlation was observed between increases in intracellular N5-HCO-H4-PteGlu concentrations following fTHHF and cell growth inhibition. De novo purine synthesis was inhibited at the second folate-dependent enzyme, phosphoribosyl aminoimidazole-carboxamide formyltransferase (AICAR transferase; EC 2.1.2.3), as determined by aminoimidazole carboxamide rescue and azaserine inhibition studies. N5-HCO-H4-PteGlu pentaglutamate was a potent inhibitor of purified MCF-7 cell AICAR transferase with a Ki of 3.0 microM while the monoglutamate was not an inhibitor up to 10 microM and fTHHF was only weakly inhibitory with a Ki of 16 microM. These findings suggest that methenyltetrahydrofolate synthetase activity is needed to prevent de novo purine synthesis inhibition by N5-HCO-H4-PteGlu polyglutamates.  相似文献   

19.
Kinetic parameters on dihydroorotate dehydrogenase (DHO-DHase) from the rodent malarial parasite, Plasmodium berghei, have been determined. This enzyme, the fourth in de novo pyrimidine biosynthesis, is particulate and is absent in the mature mammalian red cell. The Km of the substrate, dihydroorotate, was determined to be 23 microM and the Ki values for a number of substrate analogues have been determined. The most potent inhibitor was dihydroazaorotate (Ki, 3 microM), 5-azaorotate (Ki, 20 microM) and other pyrimidine analogues. The activity of the enzyme was also affected by a number of respiratory chain inhibitors. As the P. berghei infection is accompanied by reticulocytosis, a comparative study of DHO-DHase in mouse reticulocytes was also carried out. The general properties of the enzyme from these sources were similar to those of the parasite enzyme. However, significant differences in the response of the two enzymes to various inhibitors were observed and could provide a rational basis for the development of chemotherapeutic agents active against the parasite.  相似文献   

20.
(E)-5-(2-bromovinyl)-2'-deoxyuridine 5'-triphosphate (BVdUTP), known as a specific inhibitor of herpes simplex virus (type 1)-DNA polymerase, was found to be a potent inhibitor of the activity of terminal deoxynucleotidyltransferase (TdT) from calf thymus. BVdUTP was not an efficient substrate of TdT, but it inhibited the incorporation of normal deoxynucleotide substrates in competitive fashion at the nucleotide binding site of TdT molecule. The Ki value for BVdUTP (5 microM) was much less than the Km value for dGTP (83 microM), indicating stronger affinity of the inhibitor to TdT than that of the substrate. These results indicate the usefulness of BVdUTP as a potent inhibitor of TdT for elucidation of the reaction mechanism of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号