首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The phosphotyrosine interaction (PI) domains (also known as the PTB, or phosphotyrosine binding, domains) of Shc and IRS-1 are recently described domains that bind peptides phosphorylated on tyrosine residues. The PI/PTB domains differ from Src homology 2 (SH2) domains in that their binding specificity is determined by residues that lie amino terminal and not carboxy terminal to the phosphotyrosine. Recently, it has been appreciated that other cytoplasmic proteins also contain PI domains. We now show that the PI domain of X11 and one of the PI domains of FE65, two neuronal proteins, bind to the cytoplasmic domain of the amyloid precursor protein ((beta)APP). (beta)APP is an integral transmembrane glycoprotein whose cellular function is unknown. One of the processing pathways of (beta)APP leads to the secretion of A(beta), the major constituent of the amyloid deposited in the brain parenchyma and vessel walls of Alzheimer's disease patients. We have found that the X11 PI domain binds a YENPTY motif in the intracellular domain of (beta)APP that is strikingly similar to the NPXY motifs that bind the Shc and IRS-1 PI/PTB domains. However, unlike the case for binding of the Shc PI/PTB domain, tyrosine phosphorylation of the YENPTY motif is not required for the binding of (beta)APP to X11 or FE65. The binding site of the FE65 PI domain appears to be different from that of X11, as mutations within the YENPTY motif differentially affect the binding of X11 and FE65. Using site-directed mutagenesis, we have identified a crucial residue within the PI domain involved in X11 and FE65 binding to (beta)APP. The binding of X11 or FE65 PI domains to residues of the YENPTY motif of (beta)APP identifies PI domains as general protein interaction domains and may have important implications for the processing of (beta)APP.  相似文献   

2.
Activated receptor tyrosine kinases bind the Shc adaptor protein through its N-terminal phosphotyrosine-binding (PTB) and C-terminal Src homology 2 (SH2) domains. After binding, Shc is phosphorylated within the central collagen-homology (CH) linker region on Tyr-317, a residue remote to both the PTB and SH2 domains. Shc phosphorylation plays a pivotal role in the initiation of mitogenic signaling through the Ras/Raf/MEK/ERK pathway, but it is unclear if Tyr-317 phosphorylation affects Shc-receptor interactions through the PTB and SH2 domains. To investigate the structural impact of Shc phosphorylation, molecular dynamics simulations were carried out using special-purpose Molecular Dynamics Machine-Grape computers. After a 1-nanosecond equilibration, atomic motions in the structures of unphosphorylated Shc and Shc phosphorylated on Tyr-317 were calculated during a 2-nanosecond period. The results reveal larger phosphotyrosine-binding domain fluctuations and more structural flexibility of unphosphorylated Shc compared with phosphorylated Shc. Collective motions between the PTB-SH2, PTB-CH, and CH-SH2 domains were highly correlated only in unphosphorylated Shc. Dramatic changes in domain coupling and structural rigidity, induced by Tyr-317 phosphorylation, may alter Shc function, bringing about marked differences in the association of unphosphorylated and phosphorylated Shc with its numerous partners, including activated membrane receptors.  相似文献   

3.
The Src homology 2 (SH2) and collagen domain protein Shc plays a pivotal role in signaling via tyrosine kinase receptors, including epidermal growth factor receptor (EGFR). Shc binding to phospho-tyrosine residues on activated receptors is mediated by the SH2 and phospho-tyrosine binding (PTB) domains. Subsequent phosphorylation on Tyr-317 within the Shc linker region induces Shc interactions with Grb2-Son of Sevenless that initiate Ras-mitogen-activated protein kinase signaling. We use molecular dynamics simulations of full-length Shc to examine how Tyr-317 phosphorylation controls Shc conformation and interactions with EGFR. Our simulations reveal that Shc tyrosine phosphorylation results in a significant rearrangement of the relative position of its domains, suggesting a key conformational change. Importantly, computational estimations of binding affinities show that EGFR-derived phosphotyrosyl peptides bind with significantly more strength to unphosphorylated than to phosphorylated Shc. Our results unveil what we believe is a novel structural phenomenon, i.e., tyrosine phosphorylation of Shc within its linker region regulates the binding affinity of SH2 and PTB domains for phosphorylated Shc partners, with important implications for signaling dynamics.  相似文献   

4.
Modulation of amyloid precursor protein (APP) metabolism plays a pivotal role in the pathogenesis of Alzheimer's disease. The phosphotyrosine-binding/protein interaction (PTB/PI) domain of X11alpha, a neuronal cytosolic adaptor protein, binds to the YENPTY sequence in the cytoplasmic carboxyl terminus of APP. This interaction prolongs the half-life of APP and inhibits Abeta40 and Abeta42 secretion. X11alpha/Mint-1 has multiple protein-protein interaction domains, a Munc-18 interaction domain (MID), a Cask/Lin-2 interaction domain (CID), a PTB/PI domain, and two PDZ domains. These X11alpha protein interaction domains may modulate its effect on APP processing. To test this hypothesis, we performed a deletion analysis of X11alpha effects on metabolism of APP(695) Swedish (K595N/M596L) (APP(sw)) by transient cotransfection of HEK 293 cells with: 1) X11alpha (X11alpha-wt, N-MID-CID-PTB-PDZ-PDZ-C), 2) amino-terminal deletion (X11alpha-DeltaN, PTB-PDZ-PDZ), 3) carboxyl-terminal deletion (X11alpha-DeltaPDZ, MID-CID-PTB), or 4) deletion of both termini (PTB domain only, PTB). The carboxyl terminus of X11alpha was required for stabilization of APP(sw) in cells. In contrast, the amino terminus of X11alpha was required to stimulate APPs secretion. X11alpha, X11alpha-DeltaN, and X11alpha-PTB, but not X11alpha-DeltaPDZ, were effective inhibitors of Abeta40 and Abeta42 secretion. These results suggest that additional protein interaction domains of X11alpha modulate various aspects of APP metabolism.  相似文献   

5.
X11-like (X11L) is neuronal adaptor protein that interacts with the amyloid β-protein precursor (APP) and regulates its metabolism. The phosphotyrosine interaction/binding (PI/PTB) domain of X11L interacts with the cytoplasmic region of APP695. We found that X11L–APP interaction is enhanced in osmotically stressed cells and X11L modification is required for the enhancement. Amino acids 221–250 (X11L221–250) are required for the enhanced association with APP in osmotically stressed cells; this motif is 118 amino acids closer to the amino-terminal end of the protein than the PI/PTB domain (amino acids 368–555). We identified two phosphorylatable seryl residues, Ser236 and Ser238, in X11L221–250 and alanyl substitution of either seryl residue diminished the enhanced association with APP. In brain Ser238 was found to be phosphorylated and phosphorylation of X11L was required for the interaction of X11L and APP. Both seryl residues in X11L221–250 are conserved in neuronal X11, but not in X11L2, a non-neuronal X11 family member that did not exhibit enhanced APP association in osmotically stressed cells. These findings indicate that the region of X11L that regulates association with APP is located outside of, and amino-terminal to, the PI/PTB domain. Modification of this regulatory region may alter the conformation of the PI/PTB domain to modulate APP binding.  相似文献   

6.
Members of the X11/Mint family of multidomain adaptor proteins are composed of a divergent N terminus, a conserved PTB domain and a pair of C-terminal PDZ domains. Many proteins can interact with the PDZ tandem of X11 proteins, although the mechanism of such interactions is unclear. Here we show that the highly conserved C-terminal tail of X11alpha folds back and inserts into the target-binding groove of the first PDZ domain. The binding of this tail occludes the binding of other target peptides. This autoinhibited conformation of X11 requires that the two PDZ domains and the entire C-terminal tail be covalently connected to form an integral structural unit. The autoinhibited conformation of the X11 PDZ tandem provides a mechanistic explanation for the unique target-binding properties of the protein and hints at potential regulatory mechanisms for the X11-target interactions.  相似文献   

7.
A complete set of mono-, di- and triphosphorylated peptides comprising amino acids 10-27, the Mdm2 and p300 binding site(s) of p53, with and without a fluorescein label at the N-terminus, was synthesized by step-by-step solid phase synthesis. Fluorescence polarization analysis revealed that phosphorylation at Thr18 decreased binding to recombinant Mdm2 protein compared with the unphosphorylated and the two other single phosphorylated analogues. Unlabelled multiply phosphorylated peptides corresponding to this amino-terminal transactivation domain proved to be powerful tools in analysing the phosphate specificity of existing anti-p53 monoclonal and polyclonal antibodies using direct ELISA. The tetramerization domain of human p53 protein was modelled with a 53 residue-long unlabelled unphosphorylated and Ser315-phosphorylated peptide pair. CD analysis showed similar alpha-helical structures for both peptides and no major difference in the secondary structure could be observed upon phosphorylation. Size-exclusion HPLC indicated that these synthetic oligomerization domain mimics underwent a pH-dependent tetramerization process, but the presence of a phosphate group at Ser315 did not modify the oligomeric state of the 308-360 p53 fragments. Nevertheless, the fluorescein-labelled Ser315 phosphorylated peptide bound to the downstream signalling ligand DNA topoisomerase I protein with slightly higher affinity than did the unphosphorylated analogue.  相似文献   

8.
AIDA1 links persistent chemical signaling events occurring at the neuronal synapse with global changes in gene expression. Consistent with its role as a scaffolding protein, AIDA1 is composed of several protein-protein interaction domains. Here we report the NMR structure of the carboxy terminally located phosphotyrosine binding domain (PTB) that is common to all AIDA1 splice variants. A comprehensive survey of peptides identified a consensus sequence around an NxxY motif that is shared by a number of related neuronal signaling proteins. Using peptide arrays and fluorescence based assays, we determined that the AIDA1 PTB domain binds amyloid protein precursor (APP) in a similar manner to the X11/Mint PTB domain, albeit at reduced affinity (∼10 µM) that may allow AIDA1 to effectively sample APP, as well as other protein partners in a variety of cellular contexts.  相似文献   

9.
Phosphotyrosine-binding (PTB) domains were originally identified as modular domains that recognize phosphorylated Asn-Pro-Xxx-p Tyr-containing proteins. Recent binding and structural studies of PTB domain complexes with target peptides have revealed a number of deviations from the previously described mode of interaction, with respect to both the sequences of possible targets and their structures within the complexes. This diversity of recognition by PTB domains extends and strengthens our general understanding of modular binding domain recognition.  相似文献   

10.
We screened proteins for interaction with Alzheimer's beta-amyloid precursor protein (APP) and cloned a new member of the X11 protein family, X11L2. The PID/PTB element of X11L2 protein interacted with the intracellular domain of APP by GST binding assay, and in vivo interaction was confirmed by coimmunoprecipitation from cell extracts overexpressing APP and HA-tagged X11L2. This gene encoded 575 amino acids and the deduced amino acid sequence was highly homologous to rat Mint3. Three protein-protein interaction domains, a PID/PTB and two PDZ elements, were conserved among the X11 protein family, and the N-terminal region of X11L2 protein had several putative SH3 binding motifs, PXXP. Unlike other members of the X11 protein family, X11L2 mRNA was expressed in various tissues.  相似文献   

11.
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.  相似文献   

12.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   

13.
Phosphotyrosine binding domains (PTB) are protein–protein interaction domains that play important roles in various cellular signal transduction pathways. The second phosphotyrosine binding domain (PTB2) of the human scaffolding protein FE65 interacts with the C-terminal part of the Amyloid Precursor Protein (APP) involved in Alzheimer’s disease. The structure of PTB2 in complex with a 32 amino acid fragment of APP has been solved previously by X-ray crystallography. Here, we report the NMR spectral assignments of the free FE65 PTB2. This provides the basis for further investigation of the interactions of PTB2 with peptides and small organic ligands with the aim of disrupting the PTB2-APP interaction.  相似文献   

14.
Receptor tyrosine kinases transmit and process extracellular cues by recruiting intracellular signaling proteins to sites of tyrosine phosphorylation. Using protein microarrays comprising virtually every human SH2 and PTB domain, we generated quantitative protein interaction maps for three well-studied receptors--EGFR, FGFR1 and IGF1R--using phosphopeptides derived from every intracellular tyrosine residue on each receptor, regardless of whether or not they are phosphorylated in vivo. We found that, in general, peptides derived from physiological sites of tyrosine phosphorylation bind to substantially more SH2 or PTB domains than do peptides derived from nonphysiological sites, supporting the idea that kinases and interaction domains co-evolve and suggesting that new sites arise predominantly through selection favoring advantageous interactions, rather than through selection disfavoring unwanted interactions. We also found substantial qualitative overlap in the recruitment profiles of these three receptors, suggesting that their different biological effects arise, at least in part, from quantitative differences in their affinities for the proteins they recruit.  相似文献   

15.
Phosphotyrosine binding (PTB) domains of the adaptor protein Shc and insulin receptor substrate (IRS-1) interact with a distinct set of activated and tyrosine-phosphorylated cytokine and growth factor receptors and play important roles in mediating mitogenic signal transduction. By using the technique of isothermal titration calorimetry, we have studied the thermodynamics of binding of the Shc and IRS-1 PTB domains to tyrosine-phosphorylated NPXY-containing peptides derived from known receptor binding sites. The results showed that relative contributions of enthalpy and entropy to the free energy of binding are dependent on specific phosphopeptides. Binding of the Shc PTB domain to tyrosine-phosphorylated peptides from TrkA, epidermal growth factor, ErbB3, and insulin receptors is achieved via an overall entropy-driven reaction. On the other hand, recognition of the phosphopeptides of insulin and interleukin-4 receptors by the IRS-1 PTB domain is predominantly an enthalpy-driven process. Mutagenesis and amino acid substitution experiments showed that in addition to the tyrosine-phosphorylated NPXY motif, the PTB domains of Shc and IRS-1 prefer a large hydrophobic residue at pY-5 and a small hydrophobic residue at pY-1, respectively (where pY is phosphotyrosine). These results agree with the calculated solvent accessibility of these two key peptide residues in the PTB domain/peptide structures and support the notion that the PTB domains of Shc and IRS-1 employ functionally distinct mechanisms to recognize tyrosine-phosphorylated receptors.  相似文献   

16.
The family of docker proteins containing phosphotyrosine-binding (PTB) domains appears to represent a family of critically positioned and exquisitely controlled signalling proteins that relay signals from the activated receptors to downstream pathways. These proteins all have a membrane attachment domain, a PTB domain that targets the protein to a subset of receptors and a number of phosphorylatable tyrosines that dock other signalling proteins. Evidence is accruing that suggests that the PTB domain has evolved from a pleckstrin homology (PH) domain to bind to a range of sequences that, while bestowing specificity, allows switching of the docker protein between receptors or signalling systems. The history of the PTB domain and how it influences the participation of docker protein in various signalling pathways are discussed.  相似文献   

17.
18.
Sea urchin sperm-specific histones H1 and H2B have distinctive N-terminal, and in the case of H1 also C-terminal, domains containing repeats of a basic motif (-Ser-Pro-Lys/Arg-Lys/Arg- or a closely related sequence). The histones in spermatids (the precursors of sperm) are phosphorylated, and the unphosphorylated histones of mature sperm are rephosphorylated upon fertilization. These changes correlate with finely tuned changes in chromatin packing in the nucleus, and the domains responsible are evidently the N-terminal domains. We show that in spermatids there are six tandemly repeated phosphorylation sites in the N-terminal domain of H1 (a typical cAMP dependent protein kinase site is not phosphorylated) and that H2B is phosphorylated in the N-terminal domain at two or three sites in the case of H2B1 and four sites in H2B2. The consensus sequence for phosphorylation is -Ser-Pro-X-Lys/Arg-, where X is Thr, Gln, Lys or Arg. There is an additional phosphorylated site in the C-terminal domain of H1 but most (or possibly all) copies of the consensus motif, which are here dispersed, are not phosphorylated. The negative charge introduced upon phosphorylation would be expected to weaken or abolish electrostatic interaction with DNA of this motif, which also occurs, and is phosphorylated, in somatic H1s.  相似文献   

19.
The yeast splicing factor Prp40 (pre-mRNA processing protein 40) consists of a pair of WW domains followed by several FF domains. The region comprising the FF domains has been shown to associate with the 5' end of U1 small nuclear RNA and to interact directly with two proteins, the Clf1 (Crooked neck-like factor 1) and the phosphorylated repeats of the C-terminal domain of RNA polymerase II (CTD-RNAPII). In this work we reported the solution structure of the first FF domain of Prp40 and the identification of a novel ligand-binding site in FF domains. By using chemical shift assays, we found a binding site for the N-terminal crooked neck tetratricopeptide repeat of Clf1 that is distinct and structurally separate from the previously identified CTD-RNAPII binding pocket of the FBP11 (formin-binding protein 11) FF1 domain. No interaction, however, was observed between the Prp40 FF1 domain and three different peptides derived from the CTD-RNAPII protein. Indeed, the equivalent CTD-RNAPII-binding site in the Prp40 FF1 domain is predominantly negatively charged and thus unfavorable for an interaction with phosphorylated peptide sequences. Sequence alignments and phylogenetic tree reconstructions using the FF domains of three functionally related proteins, Prp40, FBP11, and CA150, revealed that Prp40 and FBP11 are not orthologous proteins and supported the different ligand specificities shown by their respective FF1 domains. Our results also revealed that not all FF domains in Prp40 are functionally equivalent. We proposed that at least two different interaction surfaces exist in FF domains that have evolved to recognize distinct binding motifs.  相似文献   

20.
The goal of this study was to provide structural information about the regulatory domains of double-headed smooth muscle heavy meromyosin, including the N terminus of the regulatory light chain, in both the phosphorylated and unphosphorylated states. We extended our previous photo-cross-linking studies (Wu, X., Clack, B. A., Zhi, G., Stull, J. T., and Cremo, C. R. (1999) J. Biol. Chem. 274, 20328-20335) to determine regions of the regulatory light chain that are cross-linked by a cross-linker attached to Cys(108) on the partner regulatory light chain. For this purpose, we have synthesized two new biotinylated sulfhydryl reactive photo-cross-linking reagents, benzophenone, 4-(N-iodoacetamido)-4'-(N-biotinylamido) and benzophenone, 4-(N-maleimido)-4'-(N-biotinylamido). Cross-linked peptides were purified by avidin affinity chromatography and characterized by Edman sequencing and mass spectrometry. Labeled Cys(108) from one regulatory light chain cross-linked to (71)GMMSEAPGPIN(81), a loop in the N-terminal half of the regulatory light chain, and to (4)RAKAKTTKKRPQR(16), a region for which there is no atomic resolution data. Both cross-links were to the partner regulatory light chain and occurred in unphosphorylated but not phosphorylated heavy meromyosin. Using these data, data from our previous study, and atomic coordinates from various myosin isoforms, we have constructed a structural model of the regulatory domain in an unphosphorylated double-headed molecule that predicts the general location of the N terminus. The implications for the structural basis of the phosphorylation-mediated regulatory mechanism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号