共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the impact of immunomodulation on the development of listeriosis within an aged population of guinea pigs after an intragastric challenge with Listeria monocytogenes. Supplementation with vitamin E for 35 days significantly increased the level of cytotoxic T cells (CD8(+)), while treatment with cyclosporin A resulted in a 25% decrease of CD8(+) T cells. In the animals receiving the low dose (10(2) CFU) of L. monocytogenes, 50% of the control-group animals became infected. Only 22% of animals receiving the orthomolecular dose of vitamin E became infected, whereas animals that were immunosuppressed had an infection rate of 89%. In the immunosuppressed group three animals (16%) developed listerial infection with a quantifiable bacterial level of 0.3-3 log CFU g(-1) of organ in the spleen and liver. In the high-dose study, the population of L. monocytogenes was consistently 1 log CFU g(-1) lower in the spleen or liver of the vitamin E-supplemented group, compared with the control and cyclosporin A-treated animals. At day 4, a significant increase in the levels of CD8(+) during listerial infection occurred in vitamin E-supplemented animals, suggesting an increased ability to produce CD8(+) T cells. The results suggest that immunomodulation of the host can influence listerial infection within an aged population of guinea pigs. 相似文献
2.
3.
Guinea pigs, previously injected with commercial staphylococcal allergen to induce delayed hypersensitivity, were infected by the intramuscular injection of S. aureus in a nonlethal dose. For control, the animals receiving only S. aureus were used. The dynamic study of the degree of septicemia and some lymphocytic characteristics in the animals was made. The study revealed that delayed hypersensitivity did not aggravate the course of the main disease; on the contrary, it rendered protection against the subsequent infection. Increased resistance to infection was manifested by a decrease in the degree of septicemia, determined from the decreased number of colony-forming units of S. aureus in the splenic tissue as assessed by inoculation into agar, as well as from a higher level of the activation of lymphocytes as assessed by rosette formation. 相似文献
4.
Máire Begley Paul D. Cotter Colin Hill R. Paul Ross 《Applied and environmental microbiology》2010,76(19):6541-6546
Analysis of a complete set of glutamate decarboxylase (gad) mutants of Listeria monocytogenes strain LO28 (ΔgadD1, ΔgadDT1, ΔgadD2, ΔgadT2, and ΔgadD3 mutants) revealed that the ΔgadD1 mutant is impaired in its ability to tolerate exposure to both sublethal and lethal levels of the lantibiotic nisin. gadD1 is strain variable and is found only in approximately 50% of L. monocytogenes strains. Growth and survival experiments revealed that possession of gadD1 correlates with a higher degree of tolerance to nisin. Significantly, a similar finding using a gadB mutant of L. lactis IL1403 implies that this may be a general phenomenon in Gram-positive bacteria. Our findings thus suggest that the specific inhibition of GAD activity or a reduction in the levels of free glutamate may prevent the growth of otherwise resistant GAD+ bacteria in foods where low pH and/or nisin is used as a preservative.Listeria monocytogenes is a food-borne pathogen that is the causative agent of listeriosis, an opportunistic infection associated with high rates of morbidity and mortality (18). The microorganism has also been the cause of significant commercial losses, being responsible for 71% of all recalls of food products due to bacterial contamination in the United States between 1993 and 1998 (25). The ubiquitous nature of L. monocytogenes, together with its ability to tolerate a variety of environmental extremes, including high salt concentrations and low pH, and the ability to grow at refrigeration temperatures, makes control of the bacterium in foods difficult (10). Hence it is not altogether surprising that the food industry invests considerable effort into developing strategies to prevent the survival and growth of this pathogen. One such strategy involves the utilization of bacteriocins. Bacteriocins are antimicrobial peptides produced by one bacterium that inhibit the growth of other bacteria and have been used as “natural” preservatives to control undesirable microbiota in food (5). The most extensively studied bacteriocin is nisin A (here referred to as nisin), a 34-amino-acid class I bacteriocin (lantibiotic) produced by Lactococcus lactis strains that is currently approved for use in foods in over 50 countries. Nisin functions by binding lipid II, an essential precursor of cell wall peptidoglycan biosynthesis. Binding to lipid II also facilitates the formation of pores within the cytoplasmic membrane leading to the release of ATP and other small cytoplasmic contents, resulting in depolarization of the membrane potential and ultimately cell death (13).The molecular mechanisms employed by L. monocytogenes to cope with nisin are poorly understood. To date, loci that have been implicated in nisin tolerance include the alternative stress sigma factor SigB, the class three stress gene regulator CtsR, the two-component systems LisRK and HK1027, and a penicillin binding protein, Pbp (2, 6, 11, 15, 21). In addition, several studies have uncovered a link between the acid stress response of L. monocytogenes and nisin resistance (3, 17, 24). Several systems are employed by L. monocytogenes to withstand low pH stress, but the glutamate decarboxylase (GAD) system is probably the most important (an overview of the GAD system is in Fig. Fig.1).1). Mutation of specific gad genes renders cells exquisitely sensitive to ex vivo porcine and synthetic human gastric fluid and significantly impairs growth and survival in low-pH foods (4, 7, 8). Given the link between acid and nisin resistance phenotypes, the present study was initiated in order to investigate the contribution, if any, of gad genes to the nisin tolerance of L. monocytogenes.Open in a separate windowFIG. 1.An overview of the L. monocytogenes glutamate decarboxylase (GAD) system. L. monocytogenes possesses five gad genes. gadD1, gadD2, and gadD3 encode decarboxylases which catalyze the conversion of glutamate to γ-amino butyrate (GABA) and carbon dioxide (CO2). gadT1 and gadT2 encode glutamate-GABA antiporters. Nisin functions by binding to lipid II, an essential precursor of cell wall peptidoglycan synthesis. Binding to lipid II facilitates the formation of pores within the cytoplasmic membrane leading to the release of ATP and may ultimately result in cell death. We suggest that under certain conditions gadD1 may contribute to intracellular ATP pools and hence tolerance of nisin. 相似文献
5.
T A Alekseeva 《Biulleten' eksperimental'no? biologii i meditsiny》1979,87(2):187-189
Functional activity of T and B lymphocytes in guinea pigs sensitized with common ragweed pollen was investigated. The content of T and B rosette-forming cells (T RFC and B RFC) was studied in guinea pigs following sensitization with common ragweed pollen. It was shown that the amount of B RFC in the regional lymph nodes at the early period of sensitization was over 4 times greater than that of the B RFC in normal animals. Functional capacity of T cells during the sensitization determined in the rosette-formation test altered less than the analogous capacity of B cells. 相似文献
6.
Heat shocks did not increase the resistance of Listeria monocytogenes to an ultrasonication treatment under pressure (Mano-Sonication; MS). While heat-shocked cells (180 min, 45 degrees C) became sixfold more heat resistant than native cells (D62 = 1.8 min vs D62 = 0.24 min), the resistance of native and heat-shocked cells to MS (200 kPa, 117 microns) was the same (DMS = 1.6 min). The inactivation rate of non-heat-shocked cells of L monocytogenes by a combined heat/ultrasonication treatment under pressure (Mano-Thermo-Sonication; MTS) was an additive effect. On the contrary, on heat-shocked cells, the inactivation rate of MTS was greater than that of heat added to the inactivation rate of MS (synergistic effect) in the range 62-68 degrees C. 相似文献
7.
8.
Cholesterol-dependent cytolysins (CDCs) are produced by a large number of pathogenic Gram-positive bacteria. Most of these single-chain proteins are secreted in the extracellular medium. Among the species producing CDCs, only two species belonging to the genus Listeria (Listeria monocytogenes and Listeria ivanovii) are able to multiply intracellularly and release their toxins in the phagosomal compartment of the infected host cell. This review provides an updated overview on the importance of listeriolysin O (LLO) in the pathogenicity of L. monocytogenes, focusing mainly on two aspects: (1) the structure-function relationship of LLO and (2) its role in intra- and extracellular signalling. We first examine the specific sequence determinants, or protein domains, that make this cytolysin so well adapted to the intracellular lifestyle of L. monocytogenes. The roles that LLO has in cellular signalling events in the context of relations to pathogenesis are also discussed. 相似文献
9.
Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing Environment
下载免费PDF全文

The objective of this study was to evaluate the resistance of biofilms of Listeria monocytogenes to sanitizing agents under laboratory conditions simulating a food processing environment. Biofilms were initially formed on stainless steel and Teflon coupons using a five-strain mixture of L. monocytogenes. The coupons were then subjected to repeated 24-h daily cycles. Each cycle consisted of three sequential steps: (i) a brief (60 s) exposure of the coupons to a sanitizing agent (a mixture of peroxides) or saline as a control treatment, (ii) storage of the coupons in sterile plastic tubes without any nutrients or water for 15 h, (iii) and incubation of the coupons in diluted growth medium for 8 h. This regimen was repeated daily for up to 3 weeks and was designed to represent stresses encountered by bacteria in a food processing environment. The bacteria on the coupons were reduced in number during the first week of the simulated food processing (SFP) regimen, but then adapted to the stressful conditions and increased in number. Biofilms repeatedly exposed the peroxide sanitizer in the SFP regimen developed resistance to the peroxide sanitizer as well as other sanitizers (quaternary ammonium compounds and chlorine). Interestingly, cells that were removed from the biofilms on peroxide-treated and control coupons were not significantly different in their resistance to sanitizing agents. These data suggest that the resistance of the treated biofilms to sanitizing agents may be due to attributes of extracellular polymeric substances and is not an intrinsic attribute of the cells in the biofilm. 相似文献
10.
The objective of this study was to evaluate the resistance of biofilms of Listeria monocytogenes to sanitizing agents under laboratory conditions simulating a food processing environment. Biofilms were initially formed on stainless steel and Teflon coupons using a five-strain mixture of L. monocytogenes. The coupons were then subjected to repeated 24-h daily cycles. Each cycle consisted of three sequential steps: (i) a brief (60 s) exposure of the coupons to a sanitizing agent (a mixture of peroxides) or saline as a control treatment, (ii) storage of the coupons in sterile plastic tubes without any nutrients or water for 15 h, (iii) and incubation of the coupons in diluted growth medium for 8 h. This regimen was repeated daily for up to 3 weeks and was designed to represent stresses encountered by bacteria in a food processing environment. The bacteria on the coupons were reduced in number during the first week of the simulated food processing (SFP) regimen, but then adapted to the stressful conditions and increased in number. Biofilms repeatedly exposed the peroxide sanitizer in the SFP regimen developed resistance to the peroxide sanitizer as well as other sanitizers (quaternary ammonium compounds and chlorine). Interestingly, cells that were removed from the biofilms on peroxide-treated and control coupons were not significantly different in their resistance to sanitizing agents. These data suggest that the resistance of the treated biofilms to sanitizing agents may be due to attributes of extracellular polymeric substances and is not an intrinsic attribute of the cells in the biofilm. 相似文献
11.
12.
13.
V P Padalkin L P Shuvalov N D Golidonova N I Dombrovski? 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》1985,(6):75-77
Changes in the cell-mediated responsiveness of the body under the action of different variants of B. thuringiensis have been studied in experiments on guinea pigs. The data thus obtained indicate that the development of sensitization occurs in the animals, which is manifested by the increase of the sensitivity of leukocytes to the specific allergen and by the increase of the phagocytic activity of peritoneal macrophages. The most pronounced changes in the immune responsiveness of guinea pigs have been observed after the parenteral administration of B. thuringiensis var. galleriae. 相似文献
14.
Listeria monocytogenes epidemic clone II (ECII) has been responsible for two multistate outbreaks in the United States in 1998-1999 and in 2002, in which contaminated ready-to-eat meat products (hot dogs and turkey deli meats, respectively) were implicated. However, ecological adaptations of ECII strains in the food-processing plant environment remain unidentified. In this study, we found that broad-host-range phages, including phages isolated from the processing plant environment, produced plaques on ECII strains grown at 37°C but not when the bacteria were grown at lower temperatures (30°C or below). ECII strains grown at lower temperatures were resistant to phage regardless of the temperature during infection and subsequent incubation. In contrast, the phage susceptibility of all other tested strains of serotype 4b (including epidemic clone I) and of strains of other serotypes and Listeria species was independent of the growth temperature of the bacteria. This temperature-dependent phage susceptibility of ECII bacteria was consistently observed with all surveyed ECII strains from outbreaks or from processing plants, regardless of the presence or absence of cadmium resistance plasmids. Phages adsorbed similarly on ECII bacteria grown at 25°C and at 37°C, suggesting that resistance of ECII strains grown at 25°C was not due to failure of the phage to adsorb. Even though the underlying mechanisms remain to be elucidated, temperature-dependent phage resistance may represent an important ecological adaptation of L. monocytogenes ECII in processed, cold-stored foods and in the processing plant environment, where relatively low temperatures prevail.Listeria monocytogenes is responsible for an estimated 2,500 cases of serious food-borne illness (listeriosis) and 500 deaths annually in the United States. It affects primarily pregnant women, newborns, the elderly, and adults with weakened immune systems. L. monocytogenes is frequently found in the environment and can grow at low temperatures, thus representing a serious hazard for cold-stored, ready-to-eat foods (18, 31).Two multistate outbreaks of listeriosis in the United States, in 1998-1999 and in 2002, respectively, were caused by contaminated ready-to-eat meats (hot dogs and turkey deli meats, respectively) contaminated by serotype 4b strains that represented a novel clonal group, designated epidemic clone II (ECII) (3, 4). ECII strains have distinct genotypes as determined by pulsed-field gel electrophoresis and various other subtyping tools, and harbor unique genetic markers (6, 8, 11, 19, 34). The genome sequencing of one of the isolates (L. monocytogenes H7858) from the 1998-1999 outbreak revealed the presence of a plasmid of ca. 80 kb (pLM80), which harbored genes mediating resistance to the heavy metal cadmium as well as genes conferring resistance to the quaternary ammonium disinfectant benzalkonium chloride (10, 29).Listeria phages (listeriaphage) have long been used for subtyping purposes (33), and extensive research has focused on the genomic characterization (2, 24, 26, 35), transducing potential (14), and biotechnological applications of selected phages (25). In addition, applications of listeriaphage as biocontrol agents in foods and the processing plant environment have been investigated (12, 15, 22). However, limited information exists on phages from processing plant environments and on the impact of environmental conditions on susceptibility of L. monocytogenes strains representing the major epidemic-associated clonal groups to such phages. We have found that strains harboring ECII-specific genetic markers can indeed be recovered from the environment of turkey-processing plants (9). Furthermore, environmental samples from such processing plants yielded phages with broad host range, which were able to infect L. monocytogenes strains of various serotypes, and different Listeria species (20). In this study, we describe the impact of growth temperature on susceptibility of L. monocytogenes ECII strains to phages, including phages isolated from turkey-processing plant environmental samples. 相似文献
15.
G Nyerges 《Acta microbiologica Academiae Scientiarum Hungaricae》1976,23(1):55-61
Specific delayed-type hypersensitivity was induced in guinea pigs with bovine albumin + complete Freund adjuvant, bovine gamma globulin + complete Freund adjuvant and BCG vaccine. The animals were subsequently tested for nonspecific antimicrobial resistance. Sensitized and control groups were challenged intraperitoneally with Listeria monocytogenes 2 hr after reinjection with the sensitizing antigen. The listeria content of the spleens was determined 1 or 5 days after the infection. The number of organisms recovered from the spleen one day after infection was significantly less in guinea pigs sensitized with bovine gamma globulin and BCG than in the control group; after 5 days no such difference was recorded. There was no difference between the bovine albumin sensitized and the control group 1 day after infection, while on the 5th postinfection day listeria counts were higher in the sensitized than in the control animals. 相似文献
16.
Postadaptational Resistance to Benzalkonium Chloride and Subsequent Physicochemical Modifications of Listeria monocytogenes
下载免费PDF全文

Monica S. To Stacy Favrin Nadya Romanova Mansel W. Griffiths 《Applied microbiology》2002,68(11):5258-5264
Many studies have demonstrated that bacteria, including Listeria monocytogenes, are capable of adapting to disinfectants used in industrial settings after prolonged exposure to sublethal concentrations. However, the consequent alterations of the cell surface due to sanitizer adaptation of this pathogen are not fully understood. Two resistant and four sensitive L. monocytogenes strains from different sources were progressively subcultured with increasing sublethal concentrations of a surfactant, benzalkonium chloride (BC). To evaluate the effects of acquired tolerance to BC, parent and adapted strains were compared by using several morphological and physiological tests. Sensitive strains showed at least a fivefold increase in the MIC, while the MIC doubled for resistant strains after the adaptation period. The hydrophobicities of cells of parent and adapted strains were similar. Serological testing indicated that antigen types 1 and 4 were both present on the cell surface of adapted cells. The data suggest that efflux pumps are the major mechanism of adaptation in sensitive strains and are less important in originally resistant isolates. A different, unknown mechanism was responsible for the original tolerance of resistant isolates. In an originally resistant strain, there was a slight shift in the fatty acid profile after adaptation, whereas sensitive strains had similar profiles. Electron micrographs revealed morphological differences after adaptation. The changes in cell surface antigens, efflux pump utilization, and fatty acid profiles suggest that different mechanisms are used by resistant and sensitive strains for adaptation to BC. 相似文献
17.
18.
19.
Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation. 相似文献
20.
Summary Living BCG, killed Mycobacterium tuberculosis cells, or BCG cell walls (CW) augmented the immunogenicity of lyophilized syngeneic ascites hepatoma (line 10) of strain-2 guinea pigs. Effective vaccine contained living BCG and lyophilized line-10 cells, or mycobacterial cells or CW attached to oil droplets and lyophilized line-10 cells. Protection against the challenge tumor was evident 14 or 21 days after one administration of either vaccine. 相似文献