首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao H  Yannaing S  Thanthan S  Kuwayama H 《Peptides》2011,32(11):2218-2224
This study was designed to determine the effects of gastrin on the circulating levels of ghrelin, growth hormone (GH), insulin, glucagon and glucose in ruminants. Two experiments were done in eight Holstein steers. Animals were randomly assigned to receive intravenous bolus injections: (1) 0.1% bovine serum albumin in saline as vehicle, 0.8, 4.0 and 20.0 μg/kg body weight (BW) of bovine sulfated gastrin-34; (2) vehicle, 0.53 μg/kg BW of bovine sulfated gastrin-17 alone or combined with 20.0 μg/kg BW of [d-Lys3]-GHRP-6, the selective antagonist of GHS-R1a. Blood samples were collected from −10 to 150 min relative to injection time. Concentrations of acyl and total ghrelin in response to gastrin-34 injection were significantly increased in a dose-dependent manner. Concentrations of GH were also markedly elevated by gastrin-34 injection; however, the effect of 20.0 μg/kg was weaker than that of 4.0 μg/kg. The three doses of gastrin-34 equally decreased insulin levels within 15 min and maintained the level until the time of last sampling. Gastrin-34 had no effect (P > 0.05) on the levels of glucagon and glucose. Levels of acyl ghrelin increased after administration of gastrin-17 alone or combined with [d-Lys3]-GHRP-6; however, [d-Lys3]-GHRP-6 did not block the elevation of GH by gastrin-17. The present results indicate that sulfated gastrin stimulates both ghrelin and GH release, but the GHS-R1a may not contribute to the release of GH by gastrin. Moreover, sulfated gastrin seems to indirectly maintain the homeostasis of blood glucose through the down-regulation of insulin in ruminants.  相似文献   

2.
The aims of the present study were to clarify the effect of kisspeptin-10 (Kp10) on the secretion of luteinizing hormone (LH), follicle stimulating hormone (FSH), growth hormone (GH) and prolactin (PRL) in goats, and compare the characteristics of any response with those of the response to gonadotropin-releasing hormone (GnRH). The experiments were performed using four female goats (4–5 years old) in the luteal phase of estrous cycle. A single intravenous (i.v.) injection of 1, 5 and 10 μg/kg b.w. (0.77, 3.85 and 7.69 nmol/kg b.w.) of Kp10 stimulated the release of LH. Maximum values were observed 20–30 min after the injection. On the other hand, Kp10 did not alter plasma GH and PRL concentrations significantly. Three consecutive i.v. injections of Kp10 (5 μg/kg b.w.) or GnRH (5 μg/kg b.w.: 4.23 nmol/kg b.w.) at 2-h intervals increased both plasma LH and FSH levels after each injection (P < 0.05); however, the responses to Kp10 were different from a similar level of GnRH. The rate of decrease in LH and FSH levels following the peak was attenuated in Kp10-treated compared to GnRH-treated animals. These results show that Kp10 can stimulate the release of LH and FSH but not GH and PRL in female goats and suggest that the LH- and FSH-releasing effect of the i.v. injection of Kp10 is less potent than that of GnRH.  相似文献   

3.
In the present study, the pituitary growth hormone (GH) response to graded doses of GH-releasing hormone (GHRH) was determined in intact (n = 3) and chronically orchidectomized (n = 3) adult rhesus monkeys (Mucaca mulatta). GHRH in doses of 0, 6.25, 12.5 and 25 microg/kg BW was infused through a teflon cannula implanted in the saphenous vein. Blood samples were collected 60 min before and 90 min after the injection of the neurohormone at 15 min intervals. All bleedings were carried out under ketamine hydrochloride anesthesia. The plasma levels of GH were determined by using AutoDELFIA time-resolved flouroimmunoassay, whereas plasma levels of testosterone and estradiol were determined using specific radioimmunoassay systems. The GH responses to GHRH were not significantly different between intact and chronically orchidectomized monkeys at any of the dose levels tested (p > 0.05). The administration of GHRH resulted in a significant (p < 0.05) stimulation of GH secretion at all the doses tested and in both the groups studied. In both intact and orchidectomized animals, the greatest response was observed at 6.25 microg/kg and no further increase was noted with the higher doses of GHRH. In conclusion, the present study suggests that chronic orchidectomy does not influence the sensitivity of the pituitary somatotropes to GHRH stimulation implying that the responsiveness of the pituitary somatotropes to GHRH is independent of testicular steroid modulation.  相似文献   

4.
Responses of growth hormone (GH) release to synthetic human growth hormone-releasing factor (hGRF)-44-NH2 analogs were determined, and the GH-releasing potency based on dose per kg of body weight (bw) was compared with that of hGRF-44-NH2 in female dairy calves. Four- and 12-month-old calves were injected intravenously with 0.25 microgram of hGRF-44-NH2 or its analogs per kg of bw. Blood samples were collected before, and during 180 min after each injection, and plasma GH concentrations were measured by radioimmunoassay. Areas under the GH response curves for 180 min after injection of hGRF-44-NH2 and its analogs were used as an index of the GH-releasing potency of each peptide. The GH-releasing potency of hGRF(1-26)-NH2 was significantly lower than that of hGRF-44-NH2 (P less than 0.05). On the other hand, hGRF(1-29)-NH2 possessed similar potency to hGRF-44-NH2. [D-Tyr1]-hGRF-44-NH2 showed prolonged GH-releasing activity, though its potency was similar to that of hGRF-44-NH2. Also, [D-Ala2]-hGRF(1-29)-NH2 exhibited prolonged GH-releasing activity, and its potency was 2.5 (P less than 0.05) and twice (P less than 0.05) as great as that of hGRF-44-NH2 and hGRF(1-29)-NH2, respectively. These results demonstrate that the N-terminal 29 amino acid residues of hGRF possess the activity site required for full GH release in vivo, and [D-Ala2]-hGRF(1-29)-NH2 has longer and greater activity, on a dose basis, than hGRF-44-NH2 in the calves.  相似文献   

5.
To investigate hemodynamic and hormonal effects of ghrelin, a novel growth hormone (GH)-releasing peptide, we gave six healthy men an intravenous bolus of human ghrelin (10 microg/kg) or placebo and vice versa 1-2 wk apart in a randomized fashion. Ghrelin elicited a marked increase in circulating GH (15-fold). The elevation of GH lasted longer than 60 min after the bolus injection. Injection of ghrelin significantly decreased mean arterial pressure (-12 mmHg, P < 0.05) without a significant change in heart rate (-4 beats/min, P = 0.39). Ghrelin significantly increased cardiac index (+16%, P < 0.05) and stroke volume index (+22%, P < 0.05). We also examined ghrelin receptor [GH secretagogues receptor (GHS-R)] gene expression in the aortas, the left ventricles, and the left atria of rats by RT-PCR. GHS-R mRNA was detectable in the rat aortas, left ventricles, and left atria, suggesting that ghrelin may cause cardiovascular effects through GH-independent mechanisms. In summary, human ghrelin elicited a potent, long-lasting GH release and had beneficial hemodynamic effects via reducing cardiac afterload and increasing cardiac output without an increase in heart rate.  相似文献   

6.
The effects of synthetic somatostatin (SRIF) on serum growth hormone (GH) concentrations stimulated by exogenous administration of synthetic thyrotropin-releasing hormone (TRH) and/or human pancreatic GH-releasing factor (hpGRF) were investigated in 4-week-old cockerels. In addition, the additive effects of TRH and hpGRF on serum GH were examined. TRH and hpGRF, when given in combination intravenously, produced an additive effect on serum GH concentration that peaked 10 min after the injection. The somatostatin did not significantly affect basal GH concentrations when given alone, but did significantly decrease the magnitude of the GH response to hpGRF. In contrast, SRIF did not significantly decrease the stimulatory effects of TRH on GH release. These results suggest that TRH and hpGRF are potent GH releasers in vivo and that their stimulating effects on GH release are additive, suggesting different mechanisms for their stimulation. The results obtained from the combination studies suggest that the main site of the stimulatory action of hpGRF is at the pituitary, and that SRIF significantly inhibited the rise in serum GH induced by a synthetic hpGRF, but not that induced by TRH.  相似文献   

7.
Because estrogen production and age are strong covariates, distinguishing their individual impact on hypothalamo-pituitary regulation of growth hormone (GH) output is difficult. In addition, at fixed elimination kinetics, systemic GH concentration patterns are controlled by three major signal types [GH-releasing hormone (GHRH), GH-releasing peptide (GHRP, ghrelin), and somatostatin (SS)] and by four dynamic mechanisms [the number, mass (size), and shape (waveform) of secretory bursts and basal (time invariant) GH secretion]. The present study introduces an investigative strategy comprising 1) imposition of an experimental estradiol clamp in pre- (PRE) and postmenopausal (POST) women; 2) stimulation of fasting GH secretion by each of GHRH, GHRP-2 (a ghrelin analog), and l-arginine (to putatively limit SSergic restraint); and 3) implementation of a flexible-waveform deconvolution model to estimate basal GH secretion simultaneously with the size and shape of secretory bursts, conditional on pulse number. The combined approach unveiled the following salient percent POST/PRE contrasts: 1) only 27% as much GH secreted in bursts during fasting (P < 0.001); 2) markedly attenuated burstlike GH secretion in response to bolus GHRP-2 (29%), bolus GHRH (30%), l-arginine (37%), constant GHRP-2 (38%), and constant GHRH (42%) (age contrasts, 0.0016 相似文献   

8.
Intravenous injection of sheep antiserum to somatostatin in the rat not only increases basal plasma TSH levels but also potentiates TSH response following exposure to cold (5° C). Plasma levels of GH rise 2–3 fold during the first 3 h after injection of the antiserum, with a progressive decrease of the effect up to 10 h. Rhythmical change of serum GH levels during a 10-hour period of observation is not altered after antiserum injection. These data indicate that somatostatin plays a physiological role in the control of both TSH and GH secretion and suggest the involvement of GH-releasing hormone, in addition to somatostatin, in the GH release mechanism.  相似文献   

9.
Development of a controlled release formulation of gonadotropin releasing hormone that would stimulate a LH surge capable of reducing the time span of ovulations would greatly benefit reproductive management because a single timed insemination could be used. A dose-response study was conducted to determine if Deslorelin, a potent gonadotropin releasing hormone analogue, delivered via the SABER system, a biodegradable controlled release system, would stimulate an ovulatory-like LH surge in the pig. Twenty ovariectomized gilts, approximately 200 d old and 100 kg body weight (BW), received estradiol benzoate (15 microg/kg BW im) and 48 h later, the gilts were given deslorelin at 0, 12.5, 25.0, 50.0 or 100.0 microg im (n = 4 each treatment group). Compared to controls, mean blood deslorelin concentrations were still elevated at 30 h after deslorelin. Mean deslorelin magnitude, area under the curve and duration were sequentially greater (P<0.05) in a dose-dependent sequence. Compared to controls, serum LH concentrations were elevated (P<0.05) for 6 to 12 h after deslorelin. A dose-response relationship was absent for all parameters of LH secretion. Magnitude of the serum LH response was greatest (P<0.05) in the 12.5 microg and 50.0 microg groups, whereas area under the curve was lower (P<0.05) after 25.0 microg of deslorelin than after 12.5, 50.0 and 100.0 microg, which were not different from each other. Thus, no more than 12.5 microg of deslorelin is necessary to obtain maximum LH release in the model studied and doses less than 12.5 microg may also be effective.  相似文献   

10.
Rizvi SS  Altaf S 《Life sciences》2000,67(7):783-797
The present study attempts to examine the role of N-methyl-D-aspartate (NMDA) receptor in the central regulation of growth hormone (GH) secretion during specific stages of pubertal development of the male rhesus monkey (Macaca mulatta). Infantile (n=4), prepubertal (n=5), peripubertal (n=5) and adult (n=5) intact male rhesus monkeys were given an agonist of NMDA receptor, N-methyl-D,L-aspartate (NMA) (15 mg/kg BW) through a teflon cannula implanted in the saphenous vein. Blood samples were collected 20-60 min before and 40-80 min after the injection of the drug at 10-20 min intervals. NMA was dissolved in normal saline immediately before use and passed through a 0.22 microm filter at the time of injection. All bleedings were carried out under ketamine hydrochloride anesthesia (initial dose 5 mg/kg BW, im followed by 2.5 mg/kg at 30 min intervals). The plasma levels of GH and testosterone (T) were determined by using specific assay systems. The hypothalamic-somatotrope activity under basal conditions was studied by averaging all the GH concentrations obtained before NMA injection, whereas the sensitivity of NMDA receptor to NMA stimulation was determined by comparing basal GH levels immediately before NMA injection at 0 min and GH concentrations obtained 10 min after the injection. The mean basal plasma concentrations of GH in the four groups of animals showed marked age-related differences. The levels of GH were found to be higher in infantile and peripubertal monkeys as compared to those of prepubertal and adult animals. A single iv injection of NMA produced differential effects on GH secretion during specific stages of postnatal development depending upon the level of GH secretion under basal conditions. Whereas NMA had no demonstrable effect on GH secretion in infantile and peripubertal animals in which the basal GH levels were high, it produced pronounced effects on GH secretion in prepubertal and adult monkeys wherein baseline GH concentrations were low. In conclusion, the present study suggests that the glutamatergic component of the control system that governs GH secretion by utilizing NMDA receptor may participate in regulation of age-related changes in the secretion of GH in the male rhesus monkey.  相似文献   

11.
12.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

13.
Nine Japanese Black and 10 Holstein heifers ranging from 1 week (wk) to 18 months (mo) old received a single bolus intravenous injection of GH-releasing factor (GRF, 0.25-microg/kg BW), glucose (112.5-mg/kg BW) or insulin (0.2-U/kg BW) at various stages through 18 mo of age. The GH secretory response to exogenous GRF in Japanese Black heifers was lower than that in Holstein heifers at all stages of growth. While insulin secretory function was not very different in both breeds from 1 to 12 mo of age, the insulin response was much higher in Japanese Black heifers than in Holstein heifers after sexual maturation. The degree of decrease in plasma glucose following insulin injection was similar in both breeds at each stage of growth. It is concluded that compared with Holstein heifers, Japanese Black heifers have lower GH and higher insulin secretory functions, and that the two breeds have similar glucose response to insulin.  相似文献   

14.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

15.
Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor, was originally purified from rat stomach; subsequently, ghrelin neurons were found in the arcuate nuclei of rats. Central effects of the peptide on GH release, however, remain to be clarified. The aim of the present study was to determine the morphologic features of GH-producing pituicytes and serum GH concentration after central administration of ghrelin. Five injections of rat ghrelin or phosphate-buffered saline (PBS; n = 10 rats/group) were given every 24 hrs (1 microg of ghrelin in 5 microl of PBS) into the lateral cerebral ventricle of male rats. Significant (P < 0.05) increases in absolute and relative pituitary weights occurred in ghrelin-treated rats versus controls (58% and 41%, respectively). Morphometric parameters (i.e., the volume of GH cells, volume of their nuclei, and volume density) all significantly (P < 0.05) increased by 17%, 18%, and 19%, respectively, in the ghrelin-treated group versus controls. Terminal serum concentration of GH was significantly (P < 0.05) increased by 15% with ghrelin treatment. The results clearly document that daily nanomolar doses of ghrelin into the lateral cerebral ventricle stimulate GH cell proliferation and promote GH release. Thus, achieving pharmacologic control of central ghrelin receptors is a promising modality to modulate the actions of GH.  相似文献   

16.
We studied the in vitro and in vivo effects of octanoylated goldfish ghrelin peptides (gGRL-19 and gGRL-12) on luteinizing hormone (LH) and growth hormone (GH) release in goldfish. gGRL-19 and gGRL-12 at picomolar doses stimulated LH and GH release from dispersed goldfish pituitary cells in perifusion and static incubation. Incubation of pituitary cells for 2 h with 10 nM gGRL-12 and 1 or 10 nM gGRL-19 increased LH-beta mRNA expression, whereas only 10 nM gGRL-19 increased GH mRNA expression. Somatostatin-14 abolished the stimulatory effects of ghrelin on GH release from dispersed pituitary cells in perifusion and static culture. The GH secretagogue receptor antagonist d-Lys(3)-GHRP-6 inhibited the ghrelin-induced LH release, whereas no effects were found on stimulation of GH release by ghrelin. Intracerebroventricular injection of 1 ng/g body wt of gGRL-19 or intraperitoneal injection of 100 ng/g body wt of gGRL-19 increased serum LH levels at 60 min after injection, whereas significant increases in GH levels were found at 15 and 30 min after these treatments. Our results indicate that, in addition to its potent stimulatory actions on GH release, goldfish ghrelin peptides have the novel function of stimulating LH release in goldfish.  相似文献   

17.
Administration of 50, 250, and 1,250 ng/kg iv of recombinant bovine tumor necrosis factor-alpha (RBTNF) did not affect basal plasma concentrations of growth hormone (GH) or thyroid-stimulating hormone in male calves. However, when administered 30 min before challenge with 1 microgram/kg iv of thyrotropin-releasing hormone (TRH), 250 ng/kg of RBTNF increased the subsequent incremental GH response. At 1,250 ng/kg of RBTNF, GH response to TRH was significantly blunted. For each dose of RBTNF administered, the incremental change in plasma thyroid-stimulating hormone following TRH was not significantly different from control. To examine direct effects of RBTNF on pituitary function, fresh bovine pituitaries were sliced into 1-mm cubes and incubated with 0 or 10(-8), 10(-9), or 10(-10) M RBTNF. Additional cultures were treated with 10(-8) or 10(-9) M GH-releasing factor or 10(-8) M TRH and 0 or 10(-8) M RBTNF. Media GH increased in cultures with 10(-10) M RBTNF and declined linearly as RBTNF concentration increased. RBTNF blocked GH release from GH-releasing factor- and TRH-challenged pituitary slices. Membranes prepared from homogenized bovine pituitaries had specific saturable binding characteristics for monomeric 125I-RBTNF. Membranes treated with 4 M MgCl2 for 10 min and washed free of Mg2+ produced Scatchard plots fit to a two-site model (high affinity site Kd = 6.6 nM), while Scatchards of non-Mg(2+)-treated membranes fit a single site (Kd = 8.9 nM). Polyacrylamide gel electrophoresis separation of 125I-RBTNF cross-linked pituitary membranes showed specific binding of monomeric 125I-RBTNF to protein components ranging in molecular weight from 19,000 to 77,000. The data suggest that RBTNF has modulatory effects on the regulation of GH secretion acting directly at the pituitary through specific receptors.  相似文献   

18.
Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary and hypothalamus. It may function as a third physiological regulator of GH secretion, along with GH-releasing hormone and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to have a role in the determination of energy homeostasis. Although feeding suppresses ghrelin production and fasting stimulates ghrelin release, the underlying mechanisms controlling this process remain unclear. The purpose of this study was to test the hypotheses, by use of a stepped hyperinsulinemic eu- hypo- hyperglycemic glucose clamp, that either hyperinsulinemia or hypoglycemia may influence ghrelin production. Having been stable in the period before the clamp, ghrelin levels rapidly fell in response to insulin infusion during euglycemia (baseline ghrelin 207 +/- 12 vs. 169 +/- 10 fmol/ml at t = 30 min, P < 0.001). Ghrelin remained suppressed during subsequent periods of hypoglycemia (mean glucose 53 +/- 2 mg/dl) and hyperglycemia (mean glucose 163 +/- 6 mg/dl). Despite suppression of ghrelin, GH showed a significant rise during hypoglycemia (baseline 4.1 +/- 1.3 vs. 28.2 +/- 3.9 microg/l at t = 120 min, P < 0.001). Our data suggest that insulin may suppress circulating ghrelin independently of glucose, although glucose may have an additional effect. We conclude that the GH response seen during hypoglycemia is not regulated by circulating ghrelin.  相似文献   

19.
Ghrelin is a brain-gut peptide known for its growth hormone (GH)-releasing and appetite-inducing activities. This natural GH secretagogue (GHS) was originally purified from rat stomach, but it is expressed widely in different tissues where it may have endocrine and paracrine effects. The central effects of ghrelin on adrenocorticotropic hormone (ACTH) cells, ACTH release and subsequent corticosterone release from adrenal glands remains to be clarified. The aim of this study was to specifically determine the morphological features of ACTH-producing pituicytes and blood concentration of ACTH and corticosterone after central administration of ghrelin. Five doses of rat ghrelin or PBS (n=10 per group) were injected every 24 h (1 microg of ghrelin in 5 muL PBS), into the lateral cerebral ventricle of male rats. Results showed that ghrelin increased (p<0.05) absolute and relative pituitary weights compared to controls (58% and 41% respectively). Morphometric parameters, i.e. the volume of the ACTH cells, nuclear volume, and volume density were all increased (p<0.05), by 17%, 6% and 13%, respectively, 2 h after the last ghrelin treatment. Ghrelin increased circulating concentrations of ACTH and corticosterone (p<0.05) by 62% and 66%, respectively. The data provide clear documentation that intracerebroventricular ghrelin stimulates ACTH cell hypertrophy and proliferation, and promotes ACTH and corticosterone release. Determining the role of ghrelin in physiological stress responses and whether control of the peptide's activity would be useful for prevention and/or treatment of stress-induced diseases remain important research goals.  相似文献   

20.
The role of the somatotropic axis in sleep regulation was studied by using the lit/lit mouse with nonfunctional growth hormone (GH)-releasing hormone (GHRH) receptors (GHRH-Rs) and control heterozygous C57BL/6J mice, which have a normal phenotype. During the light period, the lit/lit mice displayed significantly less spontaneous rapid eye movement sleep (REMS) and non-REMS (NREMS) than the controls. Intraperitoneal injection of GHRH (50 microg/kg) failed to promote sleep in the lit/lit mice, whereas it enhanced NREMS in the heterozygous mice. Subcutaneous infusion of GH replacement stimulated weight gain, increased the concentration of plasma insulin-like growth factor-1 (IGF-1), and normalized REMS, but failed to restore normal NREMS in the lit/lit mice. The NREMS response to a 4-h sleep deprivation was attenuated in the lit/lit mice. In control mice, intraperitoneal injection of ghrelin (400 microg/kg) elicited GH secretion and promoted NREMS, and intraperitoneal administration of the somatostatin analog octretotide (Oct, 200 microg/kg) inhibited sleep. In contrast, these responses were missing in the lit/lit mice. The results suggest that GH promotes REMS whereas GHRH stimulates NREMS via central GHRH-Rs and that GHRH is involved in the mediation of the sleep effects of ghrelin and somatostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号