共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of factors affecting fluorometric quantitation of cytosolic [Ca2+] in perfused hearts. 总被引:2,自引:0,他引:2
下载免费PDF全文

The goal of these studies was to examine the effects of several factors that may artifactually influence quantitation of cytosolic [Ca2+], [Ca2+]c, while using the fluorescent calcium indicator Indo-1. The following factors were investigated: 1) a possible fluorescence contribution from unhydrolized Indo-1/AM (by Mn2+ quenching), 2) Ca2+ buffering by Indo-1 (by varying [Indo-1]), 3) endothelial and mitochondrial Indo-1 loading (by bradykinin stimulation and calculations), and 4) effects of changing tissue fluorescence (predominantly NAD(P)H) on calculated [Ca2+]c during hypoxia (by a new method which allowed simultaneous determination of [Ca2+]c and changes in [NAD(P)H]). No significant contribution of Indo-1/AM was found. With increasing [Indo-1], calculated systolic [Ca2+]c fell significantly. Indo-1 incorporation (< 18%) into endothelial cells, caused a slight underestimation of systolic [Ca2+]c, while mitochondrial Indo-1 loading may cause overestimation of [Ca2+]c. With increased tissue fluorescence, during hypoxia, systolic [Ca2+]c may be underestimated by approximately 27% (for Indo-1 loading factors three to five times original tissue fluorescence). These studies suggest conditions in which experimental artifacts could be minimized to allow reliable quantitation of [Ca2+]c in intact perfused hearts using Indo-1 fluorometry. The major problem of obtaining reliable results depended on the ability to correct for changing NAD(P)H fluorescence while keeping [Indo-1] low. 相似文献
2.
Cytosolic and mitochondrial [Ca2+] in whole hearts using indo-1 acetoxymethyl ester: effects of high extracellular Ca2+. 总被引:3,自引:0,他引:3
下载免费PDF全文

J H Schreur V M Figueredo M Miyamae D M Shames A J Baker S A Camacho 《Biophysical journal》1996,70(6):2571-2580
Assessment of free cytosolic [Ca2+] ([Ca2+]c) using the acetoxymethyl ester (AM) form of indo-1 may be compromised by loading of indo-1 into noncytosolic compartments, primarily mitochondria. To determine the fraction of noncytosolic fluorescence in whole hearts loaded with indo-1 AM, Mn2+ was used to quench cytosolic fluorescence. Residual (i.e., noncytosolic) fluorescence was subtracted from the total fluorescence before calculating [Ca2+]c. Noncytosolic fluorescence was used to estimate mitochondrial [Ca2+]. In hearts paced at 5 Hz (N = 17), noncytosolic fluorescence was 0.61 +/- 0.06 and 0.56 +/- 0.07 of total fluorescence at lambda 385 and lambda 456, respectively. After taking into account noncytosolic fluorescence, systolic and diastolic [Ca2+]c was 673 +/- 72 and 132 +/- 9 nM, respectively, noncytosolic [Ca2+] was 183 +/- 36 nM and increased to 272 +/- 12 when extracellular Ca2+ was increased from 2 to 6 mM. This increase in noncytosolic [Ca2+] was inhibited by ruthenium red, a blocker of Ca2+ uptake by mitochondria. We conclude that cytosolic and mitochondrial [Ca2+] can be determined in whole hearts loaded with indo-1 AM by using Mn2+ to quench cytosolic fluorescence. 相似文献
3.
An J Varadarajan SG Novalija E Stowe DF 《American journal of physiology. Heart and circulatory physiology》2001,281(4):H1508-H1523
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage. 相似文献
4.
The hypothesis that intracellular Ca(2+) is elevated in dystrophic (mdx) skeletal muscle due to increased Ca(2+) influx is controversial. As the sub-sarcolemmal Ca(2+) ([Ca(2+)](mem)) should be even higher than the global cytosolic Ca(2+) in the presence of increased Ca(2+) influx, we investigated [Ca(2+)](mem) levels in collagenase-isolated adult flexor digitorum brevis (FDB) myofibres and myotubes of mdx and normal mice with the near-membrane Ca(2+) indicator FFP-18. Confocal imaging showed strong localization of FFP-18 to the sarcolemma only. No significant difference in [Ca(2+)](mem) was found in FDB myofibres of normal (77.3+/-3.8 nM, n=68) and mdx (79.3+/-5.6 nM, n=21, p=0.89) mice using FFP-18. Increasing external Ca(2+) to 18 mM did not significantly affect [Ca(2+)](mem) in either the normal or mdx myofibres. In the myotubes, the FFP-18 was non-selectively incorporated, distributing throughout the cytoplasm, and FFP-18-derived [Ca(2+)] values were similar to values obtained with Fura-2. Nevertheless, in the mdx myotubes, the [Ca(2+)] measured with FFP-18 increased linearly to a level approximately 2.75 times that of controls as the time of culture was prolonged. In older mdx myotubes (>or=8 days in culture), 18 mM extracellular Ca(2+) increased the steady state cytosolic [Ca(2+)] to approximately 22 times greater level than controls. This study suggests that the sub-sarcolemmal Ca(2+) homeostasis is well maintained in isolated adult mdx myofibers and also further supports the hypothesis that cytosolic Ca(2+) handling is compromised in mdx myotubes. 相似文献
5.
Sulfur dioxide derivatives modulate Na/Ca exchange currents and cytosolic [Ca2+]i in rat myocytes 总被引:3,自引:0,他引:3
We have recently shown that sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3 M/M) modulated L-type calcium, sodium, and potassium channels in rat myocytes. The aim of this study was to investigate whether SO(2) derivatives could alter Na/Ca exchanger current and the intracellular free [Ca(2+)]. The nickel-sensitive Na/Ca exchanger current was measured in rat myocytes exposed to ramp pulses in Tyrode's solution containing ouabain, nifedipine, and +/-Ni (5 mmol/l). Myocytes were loaded with the fluorescent Ca(2+) indicator Fura-2/AM to estimate intracellular Ca(2+) concentration. SO(2) derivatives significantly inhibited both outward and inward Ni-sensitive Na/Ca exchanger currents without a shift in the reversal potential. The intracellular free [Ca(2+)] was raised by SO(2) derivatives in several concentrations. SO(2) derivatives increased [Ca(2+)](i) in rat myocytes and its mechanism might involve SO(2) derivatives significantly inhibiting Na/Ca exchanger current and enhancing L-type calcium channel. 相似文献
6.
胞质[Ca2 ]i震荡的动力学变化在哺乳动物早期胚胎发育中发挥重要作用。卵母细胞的成熟伴随间断的、快速的[Ca2 ]i震荡的时空表达;在受精过程中精子因子诱导的反复[Ca2 ]i震荡的振幅和持续时间是卵细胞最有效的激活信号,这种信号形成自然连续的受精[Ca2 ]i波,并以长时持续[Ca2 ]i震荡形式在受精卵空间传递并持续数小时,直至受精完成;受精卵内源性的Ca2 释放所引起的[Ca2 ]i震荡形成第一次卵裂信号,启动早期胚胎的发育。精子PLCζ和cPKCs是形成受精卵[Ca2 ]波、[Ca2 ]震荡的重要因素。 相似文献
7.
K G Morgan 《Biophysical journal》1993,65(2):561-562
8.
谷氨酸促进大鼠海马神经元的内钙升高 总被引:1,自引:0,他引:1
谷氨酸能影响大鼠海马神经元胞内钙信号的变化,进而影响海马神经元神经冲动的发放和学习记忆过程。运用荧光测钙技术实时监测了大鼠海马神经元内钙信号的动态变化,同时分析了谷氨酸对其胞内钙信号的影响。试验表明:谷氨酸能够显著提高胞内游离钙离子的浓度;细胞外钙离子的存在、谷氨酸刺激时间及刺激频率的增加都能引起胞内钙信号不同程度的升高;但谷氨酸的过度刺激会引起钙离子浓度的超负荷,从而导致神经元结构和功能的损坏。 相似文献
9.
Endothelin isopeptides evoke Ca2+ signaling and oscillations of cytosolic free [Ca2+] in human mesangial cells 总被引:2,自引:0,他引:2
Isopeptides of the newly discovered peptide family, endothelins (ET), caused a concentration-dependent increase in intracellular free [Ca2+] ([Ca2+]i) in human glomerular mesangial cells. ET isopeptides and sarafotoxin S6b caused transient and sustained [Ca2+]i waveforms which resulted from mobilization of intracellular Ca2+ stores and from Ca2+ influx through a dihydropyridine-insensitive Ca2+ channel. Ca2+ signaling evoked by ET isopeptides underwent a marked adaptive, desensitization response. Although activation of protein kinase C attenuated ET-induced Ca2+ signaling, desensitization by ET isopeptides was independent of protein kinase C. High concentrations of ET-1 and ET-2 also caused oscillations of [Ca2+]i that partially depended on extracellular Ca2+. These results suggest that an increase in [Ca2+]i constitutes a common pathway of signal transduction for the ET peptide family. 相似文献
10.
Li H Ding X Lopez JR Takeshima H Ma J Allen PD Eltit JM 《The Journal of biological chemistry》2010,285(50):39171-39179
In the absence of store depletion, plasmalemmal Ca(2+) permeability in resting muscle is very low, and its contribution in the maintenance of Ca(2+) homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca(2+) entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca(2+) entry pathway on overall Ca(2+) homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca(2+) entry, [Ca(2+)](rest), and intracellular Ca(2+) content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca(2+) entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca(2+) homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca(2+) homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca(2+) permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca(2+)](rest) and resting Ca(2+) stores and that this pathway is defective in JP1 KO myotubes. 相似文献
11.
Montero M Lobatón CD Gutierrez-Fernández S Moreno A Alvarez J 《The Journal of biological chemistry》2003,278(50):49972-49979
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation. 相似文献
12.
Kiedrowski L 《Journal of neurochemistry》2007,100(4):915-923
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms. 相似文献
13.
Stimulus-response coupling in mammalian ciliated cells. Demonstration of two mechanisms of control for cytosolic [Ca2+] 总被引:3,自引:0,他引:3
下载免费PDF全文

Changes of cytosolic [Ca2+] have been proposed to couple stimulation of ciliary movement, however, quantitative measurements of fluctuations of intracellular free [Ca2+] associated with stimulation of ciliated cells have not been investigated. In primary cultures of rabbit oviductal ciliated cells, the stimulation of ciliary activity produced by micromolar concentrations of adenosine triphosphate (ATP) and prostaglandin F2 alpha (PGF2 alpha) was associated with a transient increase of intracellular [Ca2+]. Whereas the increase of cytosolic [Ca2+] and beat frequency produced by ATP were inhibited by the Ca-channel blocker LaCl3, the rise of cytosolic [Ca2+] and frequency of ciliary beat produced by PGF2 alpha was not affected by LaCl3. These results are the first direct demonstration that fluctuations of cytosolic [Ca2+] are associated with increased ciliary beat frequency in mammalian epithelial cells. The present findings suggest two different calcium-dependent mechanisms for stimulus-coupling in ciliary epithelium: ATP acting via purinergic receptor coupled to transmembrane influx of Ca2+, and PGF2 alpha acting via receptor-mediated release of intracellular sequestered Ca. 相似文献
14.
Yukiharu Hiramatsu Bruce J. Baum Indu S. Ambudkar 《The Journal of membrane biology》1992,129(3):277-286
This study examines the activation of divalent cation entry into rat parotid gland acinar cells by using Mn2+ as a Ca2+ surrogate cation. Following muscarinic-cholinergic stimulation of dispersed parotid acini with carbachol (10 microM), the onset of internal Ca2+ release (cytosolic [Ca2+], [Ca2+]i, increase) and the stimulation of Mn2+ entry (increase in fura2 quenching) are not simultaneously detected. [Ca2+]i elevation, due to intracellular release, is detected almost immediately following carbachol addition and peak [Ca2+]i increase occurs at 6.0 +/- 0.8 sec. However, there is an interval (apparent lag) between carbachol addition and the detection of stimulated Mn2+ entry. This apparent lag is decreased from 26 +/- 3.1 sec to 9.2 +/- 1.5 sec when external Mn2+ ([Mn2+]0) is increased from 12.5 to 500 microM. It is not decreased further with increase in [Mn2+]0 from 500 microM to 1 mM (9.8 +/- 2.1 sec), although both intracellular free Mn2+ and [Mn2+-fura2]/[fura2] increase. Thus, at [Mn2+]0 < 500 microM, the observed lag time is partially due to a limitation in the magnitude of Mn2+ entry. Furthermore, neither peak [Ca2+]i nor the time required to reach peak [Ca2+]i is significantly altered by [Mn2+]0 (12.5 microM to 1 mM). At every [Mn2+]0 tested (i.e., 12.5 microM-1 mM), the apparent lag is significantly greater than the time required to reach peak [Ca2+]i. However, when carbachol stimulation of the [Ca2+]i increase is attenuated by loading the acini with the Ca2+ chelator, 2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA), there is no detectable lag in carbachol stimulation of Mn2+ entry (with 1 mM [Mn2+]0). Importantly, in BAPTA-loaded acini, carbachol stimulates Mn2+ entry via depletion of the internal Ca2+ pool and not via direct activation of other divalent cation entry mechanisms. Based on these results, we suggest that the apparent lag in the detection of carbachol stimulation of Mn2+ entry into parotid acinar cells is due to a retardation of Mn2+ entry by the initial increase in [Ca2+]i, due to internal release, which most likely occurs proximate to the site of divalent cation entry. 相似文献
15.
Growth factors stimulate DNA synthesis of neoplastic cells but not of non-neoplastic cells in suspension cultures. Similarly, growth ceases in dense monolayers of non-neoplastic cells, while crowded neoplastic cells continue to grow. The mechanism of these important phenotypic changes is unknown; the block in growth stimulation could occur in early events of signal transduction at the plasma membrane or in a late step in the final steps of gene activation and induction of DNA synthesis. One particular early intracellular event, [Ca2+]i increases, is in fact necessary for the induction of DNA synthesis in attached non-neoplastic Balb/c 3T3 cells stimulated by platelet-derived growth factor (PDGF). We therefore used digital image analysis of intracellular Fura-2 fluorescence to determine whether PDGF can stimulate [Ca2+]i transients in suspension or in dense monolayer cultures of Balb/c 3T3 cells. In dense cells (greater than 8 x 10(4) cells/cm2) the basal [Ca2+]i and [Ca2+]i response to PDGF stimulation were both lower than those in sparser, more spread cells. PDGF also did not release internal stores of Ca2+ or produce Ca2+ influx in completely suspended cells. Remarkably, attachment alone, with minimal cell spreading, was enough to reinitiate the entire early signalling mechanism stimulated by PDGF. Thus, a block in PDGF-induced [Ca2+]i increases may contribute to the inability of PDGF to stimulate DNA synthesis in suspended non-neoplastic cells. This early block in signal transduction must be abrogated in neoplastic cells growing in suspension and dense monolayer cultures. 相似文献
16.
Zhu L He P 《American journal of physiology. Heart and circulatory physiology》2005,288(6):H2869-H2877
We have demonstrated that inhibition of NO synthase (NOS) in endothelial cells by either the NOS inhibitor N(omega)-monomethyl-l-arginine (l-NMMA) or the internalization of caveolin-1 scaffolding domain attenuated platelet-activating factor (PAF)-induced increases in microvessel permeability (Am J Physiol Heart Circ Physiol 286: H195-H201, 2004) indicating the involvement of an NO-dependent signaling pathway. To investigate whether an increase in endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) is the initiating event and Ca(2+)-dependent NO production is crucial for permeability increases, PAF (10 nM)-induced changes in endothelial [Ca(2+)](i) and NO production were measured in individually perfused rat mesenteric venular microvessels via fluorescence microscopy. When venular microvessels were exposed to PAF, endothelial [Ca(2+)](i) increased from 69 +/- 8 nM to a peak value of 374 +/- 26 nM within 3 min and then declined to a sustained level at 190 +/- 12 nM after 15 min. Inhibition of NOS did not modify PAF-induced increases in endothelial [Ca(2+)](i). PAF-induced NO production was visualized and quantified at cellular levels in individually perfused microvessels using 4,5-diaminofluorescein diacetate and fluorescence imaging. Increased fluorescence intensity (FI), which is an indication of increased NO production, occurred in 75 +/- 7% of endothelial cells in each vessel. The mean maximum FI increase was 140 +/- 7% of baseline value. This increased FI was abolished by pretreatment of the vessel with l-NMMA and attenuated in the absence of extracellular Ca(2+). These results provide direct evidence from intact microvessels that increased endothelial [Ca(2+)](i) is the initial signal that activates endothelial NOS, and the subsequent increased NO production contributes to PAF-induced increases in microvessel permeability. 相似文献
17.
An insulin-sensitive cation channel controls [Na+]i via [Ca2+]o-regulated Na+ and Ca2+ entry.
下载免费PDF全文

The insulin-stimulated cation channel previously identified in patch-clamped muscle preparations is here shown to be responsible for bulk Na+ entry into the cell. The mainly Na+ current of the channel was shown to be accompanied by an inhibitory Ca2+ component responsible for oscillations. Here, using quantitative fluorescence imaging of Fura-2- and SBFI-loaded soleus muscle, we measure changes in [Na+]i and [Ca2+]i related to channel function. Insulin increased [Na+]i and [Ca+]i in a transient spike of < 1-min duration. There was a momentary dip in [Na+]i related to inhibition of the channel by the Ca2+ spike, and changes in external Ca2+ were shown to alter [Na+]i via the cation channel, all effects being blocked by the specific channel inhibitor mu-conotoxin, but not by tetrodotoxin. The [Ca2+]i spike could also be induced by 8-bromo cyclic-guanosine 5'-monophosphate, an analogue of the channel-activator cyclic-guanosine 5'-monophosphate (cGMP). In addition it was noted that insulin reduced the [Ca2+]i rise upon subsequent muscle depolarization by a factor of 3.5. Insulin could be substituted with phorbol ester for the same effect and HA1004, a protein kinase inhibitor, blocked the reduction. 相似文献
18.
The effect of [Ca2+] and [H+] on the functional recovery of rat brain synaptosomes from anoxic insult in vitro.
下载免费PDF全文

The energy status (as measured by the ATP/ADP ratio), oxidative metabolism (14CO2 output) and neurotransmitter synthesis ( [14C]acetylcholine production) by rat brain synaptosomes utilizing [U-14C]glucose has been studied. The ability of anoxia in vitro to permanently alter these parameters was investigated with reference to external [Ca2+] and [H+]. It has previously been shown that anoxic damage to synaptosomal preparations is only apparent when their metabolism is stimulated by veratridine [Harvey, Booth & Clark (1982) Biochem. J. 206, 433-439]. It is concluded that low [Ca2+] ameliorates, and high [H+] exacerbates, the damage sustained by veratridine-stimulated anoxic synaptosomes. The combined effects of low pH, anoxia and veratridine stimulation on synaptosomal metabolism most closely approximated to the irreversible damage to brain metabolism observed during acute hypoxia in vivo [Booth, Harvey & Clark (1983) J. Neurochem. 40, 106-110]. Suitably treated synaptosomal preparations may therefore be usefully employed as models to study impaired neurotransmitter synthesis in vivo. 相似文献
19.
Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage-dependent and pH-sensitive mechanisms 总被引:2,自引:0,他引:2
Previous work (Babcock, D. F., Rufo, G. A., and Lardy, H.A. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 1327-1331) established that increased cytosolic pH (pHi) promotes metabolic and swimming activity of bull sperm and that intracellular alkalinization results from elevated extracellular K+, presumably as a consequence of membrane depolarization. The present studies show that a persistent but reversible increase in [Ca2+]i accompanies the increase in pHi that similarly results from treatment of ram sperm with elevated [K+] in alkaline media. Because comparable increases in pHi occur in the presence or absence of external Ca2+ and because [Ca2+]i is unaltered by imposed changes in pHi alone, [Ca2+]i and pHi apparently are neither directly linked by transmembrane Ca2+/H+ exchange nor indirectly linked through Na+/H+ and Na+/Ca2+ exchange under these conditions. Instead, inhibition of K+-induced increases in [Ca2+]i (but not of increases in pHi) by prenylamine, diltiazem, nifedipine, or verapamil (C1/2 = 6, 20, 30, and 60 microM, respectively) indicates that voltage-dependent Ca2+ channels, distinct from previously described voltage-dependent effectors of pHi, operate in mammalian sperm to control [Ca2+]i. Treatment with Cs+ plus valinomycin (as an alternative method of membrane depolarization) increases pHi much more effectively than it increases [Ca2+]i, and thus also partially supports this contention. In contrast to an apparent insensitivity to pHi, K+-dependent increases in [Ca2+]i are promoted reversibly by elevation of pHo, probably reflecting local surface charge effects on channel activity (as suggested by patch-clamp studies in other systems). A selective increase in membrane permeability to Ca2+ that is induced by 12 mM NaF under nondepolarizing conditions is not a consequence of cellular aggregation, but is attenuated by the chelator deferoxamine, suggesting that GTP-binding protein additionally may couple sperm Ca2+ channels to surface receptors and promote channel opening during sperm capacitation, presumably in response to agonists produced within the mammalian female reproductive tract. 相似文献
20.
Intracellular calcium transients were studied prior, during and after 30 min of global ischemia in control and aortic constricted rat hearts, with and without acute treatment with verapamil. Calcium transients [Ca2+]i continued to occur in verapamil treated animals for 18-20 min following the onset of global ischemia, whereas untreated hearts demonstrated calcium transients for only 3-8 min following global ischemia. Following the onset of global ischemia calcium transients continued to occur even though there was no measurable developed pressure. When calcium transients occurred for shorter periods of time during global ischemia the rise in diastolic calcium was greater and recovery was less. Addition of bradykinin to the perfusate showed that an increase in diastolic [Ca2+]i was related to a decrease in amplitude of developed [Ca2+]i transients and a decrease in developed pressure, but not to a change in coronary flow. 相似文献