首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important trait defining fresh tomato marketability is fruit shelf life. Exotic germplasm of Solanum pimpinellifolium is able to prolong shelf life. Sixteen recombinant inbred lines with differing values of shelf life and fruit weight were derived by antagonistic-divergent selection from an interspecific cross involving Solanum pimpinellifolium. The objective of this study was to evaluate these recombinant inbred lines for many fruit quality traits such as diameter, height, size, acidity, colour, firmness, shelf life and weight, and to characterize them by amplified fragment length polymorphism markers. For most traits, a wide range of genetic variability was found and a wide range of molecular variation was also detected. Both sets of data allowed the identification of recombinant inbred lines by means of cluster analysis and principal component analysis. Genetic association among some amplified fragment length polymorphism markers and fruit quality traits, suggested by the principal component analysis, could be identified by single point analysis. Potential molecular markers underlying agronomical traits were detected in these recombinant inbred lines.  相似文献   

2.
Identification of quantitative trait loci (QTL) for fiber quality traits that are stable across multiple generations and environments could facilitate marker-assisted selection for improving cotton strains. In the present study, F2, F2:3, and recombinant inbred lines (RILs, F 6:8 ) populations derived from an upland cotton (Gossypium hirsutum L.) cross between strain 0-153, which has excellent fiber quality, and strain sGK9708, a commercial transgenic cultivar, were constructed for QTL tagging of fiber quality. We used 5,742 simple sequence repeat primer pairs to screen for polymorphisms between the two parent strains. Linkage maps of F2 and RILs were constructed, containing 155 and 190 loci and with a total map distance of 959.4 centimorgans (cM) and 700.9?cM, respectively. We screened fiber quality QTL across multiple generations and environments through composite interval mapping of fiber quality data. Specifically, we studied F2 and F2:3 family lines from Anyang (Henan Province) in 2003 and 2004 and RILs in Anyang in 2007 and Anyang, Quzhou (Hebei Province), and Linqing (Shandong Province) in 2008. We identified 50 QTL for fiber quality: 10 for fiber strength, 10 for fiber length, 10 for micronaire, eight for fiber uniformity, and 12 for fiber elongation. Nine of these fiber quality QTL were identified in F2, F2:3 and RILs simultaneously. Two QTL for fiber strength on chromosomes C7 and C25 were detected in all three generations and all four environments and explained 16.67?C27.86% and 9.43?C21.36% of the phenotypic variation, respectively. These stable QTL for fiber quality traits could be used for marker assisted selection.  相似文献   

3.
Wild species can be used to improve various agronomic traits in cultivars; however, a limited understanding of the genetic basis underlying the morphological differences between wild and cultivated species hinders the integration of beneficial traits from wild species. In the present study, we generated and sequenced recombinant inbred lines (RILs, 201 F10 lines) derived from a cross between Solanum pimpinellifolium and Solanum lycopersicum tomatoes. Based on a high‐resolution recombination bin map to uncover major loci determining the phenotypic variance between wild and cultivated tomatoes, 104 significantly associated loci were identified for 18 agronomic traits. On average, these loci explained ~39% of the phenotypic variance of the RILs. We further generated near‐isogenic lines (NILs) for four identified loci, and the lines exhibited significant differences for the associated traits. We found that two loci could improve the flower number and inflorescence architecture in the cultivar following introgression of the wild‐species alleles. These findings allowed us to construct a trait–locus network to help explain the correlations among different traits based on the pleiotropic or linked loci. Our results provide insights into the morphological changes between wild and cultivated tomatoes, and will help to identify key genes governing important agronomic traits for the molecular selection of elite tomato varieties.  相似文献   

4.
Quantitative trait loci influencing fruit traits were identified by restriction fragment length polymorphism (RFLP) analysis in a population of recombinant inbred lines (RIL) derived from a cross of the cultivated tomato, Lycopersicon esculentum with a related wild species Lycopersicon cheesmanii. One hundred thirty-two polymorphic RFLP loci spaced throughout the tomato genome were scored for 97 F8 RIL families. Fruit weight and soluble solids were measured in replicated trials during 1991 and 1992. Seed weight was measured in 1992. Significant (P<0.01 level) quantitative trait locus (QTL) associations of marker loci were identified for each trait. A total of 73 significant marker locus-trait associations were detected for the three traits measured. Fifty-three of these associations were for fruit weight and soluble solids, many of which involved marker loci signficantly associated with both traits. QTL with large effects on all three traits were detected on chromosome 6. Greater homozygosity at many loci in the RIL population as compared to F2 populations and greater genomic coverage resulted in increased precision in the estimation of QTL effects, and large proportions of the total phenotypic variance were explained by marker class variation at significant marker loci for many traits. The RIL population was effective in detecting and discriminating among QTL for these traits previously identified in other investigations despite skewed segregation ratios at many marker loci. Large additive effects were measured at significant marker loci. Lower fruit weight, higher soluble solids, and lower seed weight were generally associated with RFLP alleles from theL. cheesmanii parent.  相似文献   

5.
60份优质番茄自交系遗传多样性AFLP分析   总被引:1,自引:0,他引:1  
本文以AFLP技术对60份优质番茄自交系的遗传多样性进行了分析。17对AFLP引物组合共扩增得到905条带,其中多态性条带251条,平均每对引物检测到约15个多态性位点,平均多态率为27.7%;仅用E7M4和E7M10两对引物组合就可以绘制60份番茄自交系的指纹图谱。60个自交系间的Jaccard遗传相似系数变幅为0.259-0.952,平均值为0.664。采用UPGMA方法聚类,遗传相似系数变幅为0.54-0.57时,60份番茄材料可以划分为7个类群。聚类结果与来源、果实大小、果形等性状未表现出明显的相关性。  相似文献   

6.
A genetic linkage map of tef was constructed with amplified fragment length polymorphism (AFLP) markers using F5 recombinant inbred lines (RILs) derived by single seed descent from the intraspecific cross of ’Kaye Murri’×’Fesho’. A total of 192 EcoRI/MseI primer combinations were screened for parental polymorphism. Around three polymorphic fragments per primer combination were detected, indicating a low polymorphism level in tef. Fifty primer combinations were selected to assay the mapping population, and 226 loci segregated among 85 F5 RILs. Most AFLP loci behaved as dominant markers (presence or absence of a band), but about 15% of the loci were codominant. Significant deviations from the expected Mendelian segregation ratio were observed for 26 loci. The genetic linkage map comprised 211 markers assembled into 25 linkage groups and covered 2,149 cM of genome. AFLP is an efficient marker system for mapping plant species with low polymorphism such as tef. This is the first genetic linkage map constructed for tef. It will facilitate the mapping of genes controlling agronomically important traits and cultivar improvement in tef. Received: 27 April 1998 / Accepted: 4 January 1999  相似文献   

7.
The results of the research confirming the possibility of applying various combinations of RAPD and ISSR primers in one multiplex PCR and the generation of a new type of R-ISSR products for the rye genome were presented in this work. The following was applied in the research: five rye genotypes including two inbred lines (153/79-1 and Ot1-3), hybrid F1 and two bulks (tolerant and susceptible) formed from recombinant inbred lines—RILs (F9) varying in the response to abiotic stress caused by nutrient deficiencies at the seedling stage. While evaluating the possibility of applying R-ISSR to the assessment of the rye variability, five of its genotypes were amplified separately with the RAPD and ISSR primers in each PCR reaction. These primers were combined in R-ISSR amplifications. The products of RAPD, ISSR and R-ISSR amplification were separated in 1.5% agarose gel. 32 R-ISSR combinations were examined, combining 20 and 8 selected RAPD and ISSR primers, respectively. 658 loci were amplified, including 230 RAPD, 180 ISSR and 271 R-ISSR, including 157 new loci. Over 91 loci were found, with an identical electrophoretic mobility for three methods. It was shown that R-ISSR products with electrophoretic mobility on agarose gels, identical to the co-migrating RAPD or ISSR, are not products of RAPD or ISSR, but they possess sequences of heteroamplicons—R-ISSR. The occurrence of sequences of primers used to R-ISSR was demonstrated while sequencing seven selected products of the above type. The ISSR primers with a low T m were proven to generate repeatable fingerprints in the thermal profile of the reaction specific for RAPD and combined with the RAPD primer—repeatable R-ISSR profiles. A similar range of variability as described in RAPD or ISSR was observed in the R-ISSR profiles. The correlation coefficient between genetic similarity matrices for five rye genotypes, calculated with the Mantel test, amounted to r AB.C = 0.870.  相似文献   

8.
Chrysanthemum is popular worldwide as cut flower, potted plant and perennial garden plant. This study used amplified fragment length polymorphism and phenotypic traits to assess genetic diversity and population structure in Chrysanthemum. Results for the phenotypic traits of ray floret number, tubular floret number, flower number, pedicel length, leaflet number on pedicel and days to visible flower bud had high level (i.e., >30 %) evaluations for genotypic coefficient of variation and phenotypic coefficient of variation; thus, heritability for various phenotypic traits ranged from 45.30 to 94.55 %. Phenotypic data clustered the genotypes into four separate groups. Twenty-five primer combinations were used for molecular analysis. On average, each primer combination produced 83.96 polymorphic DNA bands, ranging from 33 to 122 bands. Polymorphic percentage (99.3 %), polymorphism information content (0.43) and Shannon’s information index (0.45) evaluated high levels of genetic variation in the tested genotypes. The Neighbor-Joining (NJ) method grouped genotypes into six clusters, which were in part confirmed by principal coordinate analysis. A Bayesian structure analysis identified four clusters, in which 30 individuals were maintained within the admixed clusters. Results from this study provide appropriate information applicable to designing effective breeding programs and other analyses associated with future studies of Chrysanthemum.  相似文献   

9.
Plant root hairs are believed to be very important for phosphorus (P) uptake from the soil by expanding the absorptive surface area of the root and increasing the soil volume explored by the roots, but genetic information about root hair traits in soybean is relatively scarce. In the present study, two contrasting genotypes of soybean (Glycine max and Glycine soja), CN4 and XM6, and their 88 F9-derived recombinant inbred lines (RILs) were grown in a field with moderately low P availability. Some important root hair traits, including root hair density (RHD), average root hair length (ARHL), and root hair length per unit root (RHLUR) were investigated and quantified with an automatic image analysis system and the genetic variability for these root hair traits was estimated with the RIL population. The results indicated that the two parental genotypes differed significantly in the three root hair traits measured, with XM6 generally having larger RHD and RHLUR (but smaller ARHL) than CN4, which may in part explain the difference in biomass and P status between the two parents. All the three root hair traits were continually segregated in the progenial RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Analysis of variance for the RIL population showed that RHD had a low heritability (h2 b = 27.32, 31.04, 33.97% for basal roots, tap roots, total roots, respectively), while ARHL had a relatively higher genetic variance and hence a higher heritability (h2 b = 53.85, 59.18, 60.98% for basal roots, tap roots, total roots, respectively), suggesting that RHD is influenced more by environmental factors than ARHL. Both RHD and ARHL were positively correlated with RHLUR, indicating that the former two traits may be the attributes to the latter. On the other hand, RHD and ARHL were negatively correlated with each other, implying a possible complementary relationship between the two traits. Both RHD and RHLUR (but not ARHL) were positively correlated with P concentration in the plant, suggesting an important role of root hairs in P status. The basal roots had denser and higher total root hair length than the tap roots, and this is in accordance with previous observations with other plants that basal roots are more effective for P uptake than tap roots in cultivated soils.  相似文献   

10.
This study aimed to elucidate the genetics of the adult root system in elite Chinese hybrid rice. Several adult root traits in a recombinant inbred line (RIL) population of Xieyou 9308 and two backcross F1 (BCF1) populations derived from the RILs were phenotyped under hydroponic culture at heading stage for quantitative trait locus (QTL) mapping and other statistical analysis. There a total of eight QTLs detected for the root traits. Among of them, a pleiotropic QTL was repeatedly flanked by RM180 and RM5436 on the short arm of chromosome 7 for multiple traits across RILs and its BCF1 populations, accounting for 6.88% to 25.26% of the phenotypic variances. Only additive/dominant QTLs were detected for the root traits. These results can serve as a foundation for facilitating future cloning and molecular breeding.  相似文献   

11.
Selection of recombinant inbred lines (RILs) from elite hybrids is a key method in maize breeding especially in developing countries. The RILs are normally derived by repeated self-pollination and selection. In this study, we first investigated the accuracy of different models in predicting the performance of F1 hybrids between RILs derived from two elite maize inbred lines Zong3 and 87-1, and then compared these models through simulation using a wider range of genetic models. Results indicated that appropriate prediction models depended on genetic architecture, e.g., combined model using breeding value and genome-wide prediction (BV+GWP) has the highest prediction accuracy for high V D/V A ratio (>0.5) traits. Theoretical studies demonstrated that different components of genetic variance were captured by different prediction models, which in turn explained the accuracy of these models in predicting the F1 hybrid performance. Based on genome-wide prediction model (GWP), 114 untested F1 hybrids possibly having higher grain yield than the original F1 hybrid Yuyu22 (the single cross between Zong3 and 87-1) have been identified and recommended for further field test.  相似文献   

12.
Recombinant inbred lines for genetic mapping in tomato   总被引:11,自引:5,他引:6  
A cross between the cultivated tomato Lycopersicon esculentum and a related wild species L. cheesmanii yielded 97 recombinant inbred lines (RILs) which were used to construct a genetic map consisting of 132 molecular markers. Significant deviation from the expected 1:1 ratio between the two homozygous classes was found in 73% of the markers. In 98% of the deviating markers, L. esculentum alleles were present in greater frequency than the L. cheesmanii alleles. For most of the markers with skewed segregation, the direction of the deviation was maintained from F2 to F7 generations. The average heterozygosity in the population was 15%. This value is significantly greater than the 1.5% heterozygosity expected for RILs in the F7 generation. On average, recombination between linked markers was twice as high in the RILs than in the F2 population used to derive them. The utility of RILs for the mapping of qualitative and quantitative traits is discussed.  相似文献   

13.
14.
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants for its therapeutic effects. In the present study, morphological traits, ISSR (inter-simple sequence related) and SRAP (sequence-related amplified polymorphism) markers were used to analyze the genetic diversity of 59 S. miltiorrhiza phenotypes. Out of the 100 ISSR primers and 100 SRAP primer combinations screened, 13 ISSRs and 7 SRAPs were exploited to evaluate the level of polymorphism and discriminating capacity. The results showed that the 13 ISSRs generated 190 repeatable amplified bands, of which 177 (93.2%) were polymorphic, with an average of 13.6 polymorphic fragments per primer. The 7 SRAPs produced 286 repeatable amplified bands, of which 266 (93.4%) were polymorphic, with an average of 38.1 polymorphic fragments per primer. Cluster analysis readily separated different morphological accessions, wild and cultivated controls based on morphological traits, ISSR and SRAP markers. The study indicated that morphological traits, ISSR and SRAP markers were reliable and effective for assessing the genetic diversity of phenotypic S. miltiorrhiza accessions. The overall results suggested that the introduction of genetic variation from morphology-based germplasms enlarged the genetic base for the collection, conservation and further breeding program of S. miltiorrhiza germplasm.  相似文献   

15.
Mucuna pruriens is a well-recognized agricultural and horticultural crop with important medicinal use. However, antinutritional factors in seed and adverse morphological characters have negatively affected its cultivation. To elucidate the genetic control of agronomic traits, an intraspecific genetic linkage map of Indian M. pruriens has been developed based on amplified fragment length polymorphism (AFLP) markers using 200 F 2 progenies derived from a cross between wild and cultivated genotypes. The resulting linkage map comprised 129 AFLP markers dispersed over 13 linkage groups spanning a total distance of 618.88 cM with an average marker interval of 4.79 cM. For the first time, three QTLs explaining about 6.05–14.77% of the corresponding total phenotypic variation for three quantitative (seed) traits and, eight QTLs explaining about 25.96% of the corresponding total phenotypic variation for three qualitative traits have been detected on four linkage groups. The map presented here will pave a way for mapping of genes/QTLs for the important agronomic and horticultural traits contrasting between the parents used in this study.  相似文献   

16.
Morphological traits and molecular markers are two common methods for genetic variation studies. Molecular markers, morphological traits methods and relationship between the two were used to study genetic variation among 43 oat genotypes and varieties. For this purpose, an augmented design was conducted in three replicates at 2008–2009 cropping season in the experimental field of Campus of Agriculture and Natural Resources of Razi University, Kermanshah, Iran. Four wild oat accessions (Avena sterilis) were added to evaluated genotypes in molecular experiment. Results showed a significant variation among genotypes for all morphological traits and they were classified based on this variation in four groups by WARD cluster analysis. In molecular experiment, 28 inter simple sequence repeat (ISSR) primers amplified 206 polymorph bands. Based on Jaccard similarity matrix, similarity among genotypes was varied from 0.23 to 0.66 and cluster analysis classified genotypes in seven groups by complete linkage method. The correlation between ISSR marker and morphological traits classifications was not significant. ISSR showed to be a helpful marker for genotype identity and separation as it put wild accessions in a group.  相似文献   

17.
We analyzed polymorphism in the parental lines GK26 and Mo17 and testers Od221MV, Od308MV, and Od329 using SSR-analysis. Recombinant inbred lines (RILs) from populations F4 and F6 were genotyped at ten polymorphic loci. Allelic compositions and allele frequencies at microsatellite loci were investigated in parental lines and testers, and the best highly heterotic hybrids and their molecular genetic formulae were derived. The allelic composition of microsatellites were investigated in RILs and high-yield hybrids for the best combining ability parameters.  相似文献   

18.
Selection for anthracnose disease resistance is one of the top priorities in white lupin (Lupinus albus) breeding programs. A cross was made between a landrace P27174 (resistant to anthracnose) and a cultivar Kiev Mutant (susceptible). The progeny was advanced to F8 recombinant inbred lines (RILs). Disease tests on the RIL population from field trials over 2 years indicated that the disease resistance in P27174 was polygenic controlled. A modified selective genotyping strategy was applied in the development of molecular markers linked to quantitative loci conferring anthracnose diseases resistance. Eight individual plants representing high level of anthracnose resistance (HR), eight plants representing susceptibility (S), together with eight lines representing medium level of anthracnose resistance (MR), were subjected to DNA fingerprinting by Microsatellite-anchored Fragment Length Polymorphisms (MFLP). Six MFLP polymorphisms, which had the banding pattern matching the HR plants and the S plants, were identified as candidate markers linked to quantitative loci conferring anthracnose resistance. The six candidate MFLP markers were delineated into three groups based on their banding variation on the eight MR plants. One candidate MFLP marker each from the three groups was selected, cloned, sequenced, and converted into co-dominant, sequence-specific PCR markers. These three markers, designated as WANR1, WANR2 and WANR3, were tested on a segregating population containing 189 F8 RILs. The disease phenotyping data and the marker genotyping data on the F8 RILs were merged and analysed by the JMP software using the ‘fit-model’ function, which revealed that 71% of the phenotypic variation was controlled by genetic factors, while the other 29% of the phenotypic variation was due to environmental factors and environment × genotype interactions. On individual marker basis, marker WANR1 conditioned 39% of phenotypic variations of anthracnose resistance, followed by marker WANR2 with 8%, and WANR3 with 12%. Further analysis showed that WANR2 and WANR3 were on the same linkage group with a genetic distance of 15.3 cM. The combination of the two markers WANR1 and WANR3 explained 51% out from the 71% of the genetic controlled variations for disease resistance, indicating that the two QTLs working additively for anthracnose disease resistance. A simulation of marker-assisted selection on the F8 RIL population using the two markers WANR1 and WANR3 identified 42 out of the 189 RILs being homozygous for resistance-allele bands for both markers, and 41 of them showed disease severity below 3.0 on the 1 (highly resistant) to 5 (susceptible) scale. The two markers WANR1 and WANR3 have now been implemented for marker-assisted selection for anthracnose resistance in the L. albus breeding program in Australia.  相似文献   

19.
Grain yield (GY) is one of the most important and complex quantitative traits in maize (Zea mays L.) breeding practice. Quantitative trait loci (QTLs) for GY and three kernel-related traits were detected in a set of recombinant inbred lines (RILs). One hundred and seven simple sequence repeats (SSRs) and 168 insertion/deletion polymorphism markers (Indels) were used to genotype RILs. Eight QTLs were found to be associated with four yield-related traits: GY, 100-kernel weight (HKW), 10-kernel length (KL), and 10-kernel length width (KW). Each QTL explained between 5.96 (qKL2-1) and 13.05 (qKL1-1) per cent of the phenotypic variance. Notably, one common QTL, located at the marker interval between bnlg1893 and chr2-236477 (chromosomal bin 2.09) simultaneously controlled GY and HKW; another common QTL, at bin 2.03 was simultaneously responsible for HKW and KW. Of the QTLs identified, only one pair of significant epistatic interaction involved in chromosomal region at bin 2.03 was detected for HKW; no significant QTL × environment interactions were observed. These results provide the common QTLs and for marker-assisted breeding.  相似文献   

20.
QTL mapping of fruit-related traits in pepper (Capsicum annuum)   总被引:11,自引:0,他引:11  
QTL analysis of pepper fruit characters was performed in an F3 population derived from a cross between two Capsicum annuum genotypes, the bell-type cultivar Maor and the Indian small-fruited line Perennial. RFLP, AFLP®1, RAPD and morphological markers (a total of 177) were used to construct a comparative pepper-tomato genetic map for this cross, and 14 quantitatively inherited traits were evaluated in 180 F3 families. A total of 55 QTL were identified by interval analysis using LOD 3.0 as the threshold for QTL detection. QTL for several traits including fruit diameter and weight, pericarp thickness and pedicel diameter were often located in similar chromosomal regions, thus reflecting high genetic correlations among these traits. A major QTL that accounts for more than 60% of the phenotypic variation for fruit shape (ratio of fruit length to fruit diameter) was detected in chromosome 3. This chromosome also contained QTL for most of the traits scored in the population. Markers in linkage groups 2, 3, 8 and 10 were associated with QTL for multiple traits, thereby suggesting their importance as loci that control developmental processes in pepper. Several QTL in pepper appeared to correspond to positions in tomato for loci controlling the same traits, suggesting the hypothesis that these QTL may be orthologous in the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号