首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The programmed vs. non-programmed aging controversy has now existed in some form for at least 150 years. For much of the XX century, it was almost universally believed that evolution theory prohibited programmed (adaptive) aging in mammals and there was little direct experimental or observational evidence favoring it. More recently, multiple new evolutionary mechanics concepts that support programmed aging and steadily increasing direct evidence favoring it overwhelmingly support the existence of programmed aging in humans and other organisms. This issue is important because the different theories suggest very different mechanisms for the aging process that in turn suggest very different paths toward treating and preventing age-related diseases.  相似文献   

2.
Modern programmed (adaptive) theories of biological aging contend that organisms including mammals have generally evolved mechanisms that purposely limit their lifespans in order to obtain an evolutionary benefit. Modern non-programmed theories contend that mammal aging generally results from natural deteriorative processes, and that lifespan differences between species are explained by differences in the degree to which they resist those processes. Originally proposed in the 19th century, programmed aging in mammals has historically been widely summarily rejected as obviously incompatible with the mechanics of the evolution process. However, relatively recent and continuing developments described here have dramatically changed this situation, and programmed mammal aging now has a better evolutionary basis than non-programmed aging. Resolution of this issue is critically important to medical research because the two theories predict that very different biological mechanisms are ultimately responsible for age-related diseases and conditions.  相似文献   

3.
Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.  相似文献   

4.
Programmed aging theories contend that evolved biological mechanisms purposely limit internally determined lifespans in mammals and are ultimately responsible for most instances of highly age-related diseases and conditions. Until recently, the existence of programmed aging mechanisms was considered theoretically impossible because it directly conflicted with Darwin’s survival-of-the-fittest evolutionary mechanics concept as widely taught and generally understood. However, subsequent discoveries, especially in genetics, have exposed issues with some details of Darwin’s theory that affect the mechanics of the evolution process and strongly suggest that programmed aging mechanisms in humans and other mammals can and did evolve, and more generally, that a trait that benefits a population can evolve even if, like senescence, it is adverse to individual members of the population. Evolvability theories contend that organisms can possess evolved design characteristics (traits) that affect their ability to evolve, and further, that a trait that increases a population’s ability to evolve (increases evolvability) can be acquired and retained even if it is adverse in traditional individual fitness terms. Programmed aging theories based on evolvability contend that internally limiting lifespan in a species-specific manner creates an evolvability advantage that results in the evolution and retention of senescence. This issue is critical to medical research because the different theories lead to dramatically different concepts regarding the nature of biological mechanisms behind highly age-related diseases and conditions.  相似文献   

5.
Programmed (adaptive) aging refers to the idea that mammals, including humans and other complex organisms, have evolved mechanisms that purposely cause or allow senescence or otherwise internally limit their lifespans in order to obtain an evolutionary advantage. Until recently, programmed aging had been thought to be theoretically impossible because of the mechanics of the evolution process. However, there is now substantial theoretical and empirical support for the existence of programmed aging in mammals. Therefore, a comprehensive approach to medical research on aging and age-related diseases must consider programmed aging mechanisms and the detailed nature of such mechanisms is of major importance. Theories of externally regulated programmed aging suggest that in mammals and other complex organisms, genetically specified senescence mechanisms detect local or temporary external conditions that affect the optimal lifespan for a species population and can adjust the lifespans of individual members in response. This article describes why lifespan regulation in response to external conditions adds to the evolutionary advantage produced by programmed aging and why a specific externally regulated programmed aging mechanism provides the best match to empirical evidence on mammal senescence.  相似文献   

6.
The evolution of the aging process has long been a biological riddle, because it is difficult to explain the evolution of a trait that has apparently no benefit to the individual. Over 60 years ago, Medawar realized that the force of natural selection declines with chronological age because of unavoidable environmental risks. This forms the basis of the mainstream view that aging arises as a consequence of a declining selection pressure to maintain the physiological functioning of living beings forever. Over recent years, however, a number of articles have appeared that nevertheless propose the existence of specific aging genes; that is, that the aging process is genetically programmed. If this view were correct, it would have serious implications for experiments to understand and postpone aging. Therefore, we studied in detail various specific proposals why aging should be programmed. We find that not a single one withstands close scrutiny of its assumptions or simulation results. Nonprogrammed aging theories based on the insight of Medawar (as further developed by Hamilton and Charlesworth) are still the best explanation for the evolution of the aging process. We hope that this analysis helps to clarify the problems associated with the idea of programmed aging.  相似文献   

7.
This article compares two hypotheses regarding the mechanisms responsible for aging in humans and other mammals. In the passive mechanism, aging is the result of inadequacies in maintenance and repair functions that act to prevent or repair damage from fundamental deteriorative processes. In the active mechanism, a life span management system purposely limits life span by deactivating maintenance and repair processes beyond a species-specific age.As described here, the active mechanism provides a much better fit to observational evidence while the passive mechanism provides a much better fit to traditional evolutionary mechanics theory. However, there are many other observations that conflict with traditional theory and consequently a number of alternative evolutionary mechanics theories have been developed since 1962. Several of these alternatives support active life span management and aging theories providing a rationale for active life span management have been developed based on each of those alternatives.This issue is very important to our ability to treat age-related diseases and conditions. If indeed the passive mechanism is correct, then efforts should continue to be exerted to find treatments for each different manifestation of aging, independently of the others. If the active concept is valid it is clear that there are, in addition, substantial opportunities for finding agents that generally delay aging and simultaneously ameliorate multiple manifestations of aging.In the past, the evolutionary issues have been used as essentially the entire justification for summarily rejecting active theories. Given the public health considerations and the increasing number of issues surrounding evolutionary mechanics theory, this is no longer a reasonable or responsible path.  相似文献   

8.
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named “chronocrisis”) of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.  相似文献   

9.
There is a class of theories of aging (variously termed adaptive aging, aging by design, aging selected for its own sake, or programmed death theories) that hold that an organism design that limits life span conveys benefits and was selected specifically because it limits life span. These theories have enjoyed a resurgence of popularity because of the discovery of genes that promote aging in various organisms.However, traditional evolution theory has a core tenet that excludes the possibility of evolving and retaining an individually adverse organism design, i.e. a design characteristic that reduces the ability of individual organisms to survive or reproduce without any compensating individual benefit. Various theories of aging dating from the 1950s and based on traditional evolution theory enjoy substantial popularity. Therefore, any theorist proposing an adaptive theory of aging must necessarily also propose some adjustment to traditional evolution theory that specifically addresses the individual benefit issue. This paper describes an adaptive theory of aging and describes how one of the proposed adjustments (evolvability theory) supports adaptive aging.This issue is important because adaptive theories are generally more optimistic regarding prospects for medical intervention in the aging process and also suggest different approaches in achieving such intervention.  相似文献   

10.
The literature on apoptosis has grown tremendously in recent years, and the mechanisms that are involved in this programmed cell death pathway have been enlightened. It is now known that apoptosis takes place starting from early development to adult stage for the homeostasis of multicellular organisms, during disease development and in response to different stimuli in many different systems. In this review, we attempted to summarize the current knowledge on the circumstances and the mechanisms that lead to induction of apoptosis, while going over the molecular details of the modulator and mediators of apoptosis as well as drawing the lines between programmed and non-programmed cell death pathways. The review will particularly focus on Bcl-2 family proteins, the role of different caspases in the process of apoptosis, and their inhibitors as well as the importance of apoptosis during different disease states. Understanding the molecular mechanisms involved in apoptosis better will make a big impact on human diseases, particularly cancer, and its management in the clinics.  相似文献   

11.
Aging is a complex and not well understood process. Two opposite concepts try to explain its causes and mechanisms — programmed aging and aging of “wear and tear” (stochastic aging). To date, much evidence has been obtained that contradicts the theories of aging as being due to accumulation of various damages. For example, creation of adequate conditions for the functioning of the organism’s components (appropriate microenvironment, humoral background, etc.) has been shown to cause partial or complete reversibility of signs of its aging. Programmed aging and death of an organism can be termed phenoptosis by analogy to the term apoptosis for programmed cell death (this term was first suggested by V. P. Skulachev). The necessity of this phenomenon, since A. Weismann, has been justified by the need for population renewal according to ecological and evolutionary requirements. Species-specific lifespan, age-dependent changes in expression pattern of genes, etc. are compatible with the concept of phenoptosis. However, the intraspecific rate of aging was shown to vary over of a wide range depending on living conditions. This means that the “aging program” is not set rigidly; it sensitively adjusts an individual to the specific realities of its habitat. Moreover, there are indications that in rather severe conditions of natural habitat the aging program can be completely cancelled, as the need for it disappears because of the raised mortality from external causes (high extrinsic mortality), providing fast turnover of the population.  相似文献   

12.
Bredesen DE 《Aging cell》2004,3(5):255-259
Summary Aging and lifespan determination have been viewed, in the most well-accepted theories, as nonprogrammatic, and are thought to result from the evolutionary selection for early fitness at the expense of late survival. Here, recent data implicating potentially programmatic aspects of aging and lifespan determination are discussed, and analogies between programmed cell death and programmed organismal death are offered. It is hoped that the recognition of at least the possibility of a programmatic aspect, or aspects, to the determination of longevity and the process of aging will help to optimize our chances to identify appropriate therapeutic targets both for longevity enhancement and disease prevention.  相似文献   

13.
Four theories of aging are discussed to examine how effectively they might explain the aging process in rotifers. One of the early theories, the rate of living theory of aging can perhaps be discounted. Although the theory predicts that increased biological energy expenditure, in the form of increased activity or reproduction, would lead to a shorter lifespan, these predictions are not born out by experimental evidence. At the whole animal level, a case can be made for a theory of programmed aging, where the end of reproduction signals the end of the lifespan. Support for this view comes from the observation that lifespan is positively correlated with reproductive parameters, that treatments that extend lifespan usually act to extend the reproductive period, and that the end of reproduction is associated with high mortality and senescent biochemical changes. Two molecular theories of aging are also discussed; the free radical theory of aging and the calcium theory of aging. These theories point to the fact that molecular damage accumulates and that calcium influx increases in the course of aging. When free radical buildup or calcium homeostasis is reduced, lifespan is extended. A molecular explanation of aging does not necessarily exclude the idea of programmed aging. It is probable that an eventual understanding of the aging process will rest on both a physiological and molecular basis.  相似文献   

14.
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.  相似文献   

15.
Genetic analysis of Drosophil has provided evidence in support of two proposed evolutionary genetic mechanisms of aging: mutation accumulation and antagonistic pleiotropy. Both mechanisms result from the lack of natural selection acting on old organisms. Analyses of large numbers of flies have revealed that mortality rates do not continue to rise with age as previously thought, but plateau at advanced ages. This phenomenon has implications both for models and for definitions of aging, and may be explained by the evolutionary theories. The physiological processes and genes most relevant to aging are being identified using Drosophila lines selected in the laboratory for postponed senescence. Oxidative stress and insufficient metabolic reserves/capacity may be particularly important factors in limiting the fruitfly lifespan. Genes which exhibit aging-related changes in expression are now being identified. Transgenic flies are being used to analyze the mechanisms of such aging-related gene expression, and to test the effects of specific genes on aging and aging-related deterioration.  相似文献   

16.
17.
During protein synthesis the ribosome interacts with ligands such as mRNA, tRNA and translation factors. We have studied the effect of ribosome-ligand interaction on the accessibility of 18S rRNA for single strand-specific modification in ribosomal complexes that have been assembled in vivo, i. e. native polysomes. A comparison of the modification patterns derived from programmed and non-programmed ribosomes showed that bases in the 630- and 1060-loops (530- and 790-loops in E. coli) together with two nucleotides in helices 33 and 34 were protected from chemical modification. The majority of the protected sites were homologous to sites previously suggested to be involved in mRNA and/or tRNA binding in prokaryotes and eukaryotes, implying that the interaction sites for these ligands are similar, if not identical, in naturally occurring programmed ribosomes and in in vitro assembled ribosomal complexes. Additional differences between programmed and non-programmed ribosomes were found in hairpin 8. The bases in helix 8 showed increased exposure to chemical modification in the programmed ribosomes. In addition, structural differences in helices 36 and 37 were observed between native 80S run-off ribosomes and 80S ribosomes assembled from isolated 40S and 60S subunits.  相似文献   

18.
Aging is considered to be a progressive decline in an organism's functioning over time and is almost universal throughout the living world. Currently, many different aging mechanisms have been reported at all levels of biological organization, with a variety of biochemical, metabolic, and genetic pathways involved. Some of these mechanisms are common across species, and others work different, but each of them is constitutive. This review describes the common characteristics of the aging processes, which are consistent changes over time that involve either the accumulation or depletion of particular system components. These accumulations and depletions may result from imperfect homeostasis, which is the incomplete compensation of a particular biological process with another process evolved to compensate it. In accordance with disposable-soma theory, this imperfection in homeostasis may originate as a function of cell differentiation as early as in yeasts. It may result either from antagonistic pleiotropy mechanisms, or be simply negligible as a subject of natural selection if an adverse effect of the accumulation phenotypically manifests in organism's post-reproductive age. If this phenomenon holds true for many different functions it would lead to the occurrence of a wide variety of aging mechanisms, some of which are common among species, while others unique, because aging is the inherent property of most biological processes that have not yet evolved to be perfectly in balance. Examples of imperfect homeostasis mechanisms of aging, the ways in which germ line escapes from them, and the possibilities of anti-aging treatment are discussed in this review.  相似文献   

19.
衰老及相关基因群   总被引:1,自引:0,他引:1  
综述20世纪与基因相关的衰老原理的探索及其进展,整体动物水平的衰老研究归纳了衰老了诸多表象但疏于对衰老本质的探讨。线粒体-自由基衰老学说阐述了线粒体DNA的损伤与衰老有很大的相关性,由Hayflic k分裂限制衍生的端粒衰老学说给衰老机制提供了重要信息,目前狭隘的基因程序化衰老学说已和损伤衰老概念有机的联系在了一起。总之,自由基衰老学说得到了氧化衰老学说和糖基化衰老学说的补充逐渐形成了生化副反应与基因衰老学说的大统一衰老机制板块理论。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号