首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The involvement of Ca2+ in the response to high Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+ was investigated in Saccharomyces cerevisiae. The yeast cells responded through a sharp increase in cytosolic Ca2+ when exposed to Cd2+, and to a lesser extent to Cu2+, but not to Mn2+, Co2+, Ni2+, Zn2+, or Hg2+. The response to high Cd2+ depended mainly on external Ca2+ (transported through the Cch1p/Mid1p channel) but also on vacuolar Ca2+ (released into the cytosol through the Yvc1p channel). The adaptation to high Cd2+ was influenced by perturbations in Ca2+ homeostasis. Thus, the tolerance to Cd2+ often correlated with sharp Cd2+-induced cytosolic Ca2+ pulses, while the Cd2+ sensitivity was accompanied by the incapacity to rapidly restore the low cytosolic Ca2+.  相似文献   

3.
4.
Xu X  Liu X  Zhang L  Chen J  Liu W  Liu Q 《The protein journal》2006,25(6):423-430
Acutolysin D, isolated from the venom of Agkistrodon acutus, possesses marked haemorrhagic and proteolytic activities. The molecular weight and the absorption coefficients (A 1% 280) of acutolyisn D have been determined to be 47,850 ± 8 amu and 9.3 by mass spectrometer and UV spectrum, respectively. The effects of metal ions on the conformation and activity of acutolysin D have been studied by following fluorescence, circular dichroism and biological activity measurements. Acutolysin D contains two Ca2+-binding sites and two Zn2+-binding sites determined by atomic absorption spectrophotometer. Zn2+ is essential for the enzyme activities of acutolysin D, however, the presence of 1 mM Zn2+ significantly decreases its caseinolytic activity and intrinsic fluorescence intensity at pH 9.0 due to Zn(OH)2 precipitate formation. Ca2+ is important for the structural integrity of acutolysin D, and the presence of 1 mM Ca2+ markedly enhances its caseinolytic activity. Interestingly, the caseinolytic activity which is inhibited partly by Cu2+, Co2+, Mn2+ or Tb3+ and inhibited completely by Cd2+, is enhanced by Mg2+. The fluorescence intensity of the protein decreases in the presence of Cu2+, Co2+, Cd2+ or Mn2+, but neither for Ca2+, Mg2+ nor for Tb3+. Zn2+, Ca2+, Mg2+, Cu2+, Mn2+, Co2+ and Tb3+ have slight effects on its secondary structure contents. In addition, Cd2+ causes a marked increase of antiparallel β-sheet content from 45.5% to 60.2%.  相似文献   

5.
Cadmium uptake kinetics in intact soybean plants   总被引:33,自引:3,他引:30       下载免费PDF全文
The absorption characteristics of Cd2+ by 10- to 12-day-old soybean plants (Glycine max cv Williams) were investigated with respect to influence of Cd concentration on adsorption to root surfaces, root absorption, transport kinetics and interaction with the nutrient cations Cu2+, Fe2+, Mn2+, and Zn2+. The fraction of nonexchangeable Cd bound to roots remained relatively constant at 20 to 25% of the absorbed fraction at solution concentration of 0.0025 to 0.5 micromolar, and increased to 45% at solution concentration in excess of 0.5 micromolar. The exchangeable fraction represented 1.4 to 32% of the absorbed fraction, and was concentration dependent. Using dinitrophenol as a metabolic inhibitor, the `metabolically absorbed' fraction was shown to represent 75 to 80% of the absorbed fraction at concentration less than 0.5 micromolar, and decreased to 55% at 5 micromolar. At comparatively low Cd concentrations, 0.0025 to micromolar 0.3, root absorption exhibited two isotherms with K2 values of 0.08 and 1.2 micromolar. Root absorption and transfer from root to shoot of Cd2+ was inhibited by Cu2+, Fe2+, Mn2+, and Zn2+. Analyses of kinetic interaction of these nutrient cations with Cd2+ indicated that Cu2+, Fe2+, Zn2+, and possibly Mn2+ inhibited Cd absorption competitively suggesting an involvement of a common transport site or process.  相似文献   

6.
Abstract: The effects of the divalent cations Ca2+, Sr2+, Ba2+, Mg2+, Mn2+, and Cd2+ were studied on γ-aminobutyric acidA (GABAA) responses in rat cerebral cortical synaptoneurosomes. The divalent cations produced bidirectional modulation of muscimol-induced 36Cl? uptake consistent with their ability to permeate and block Ca2+channels. The order of potency for inhibition of muscimol responses was Ca2+ > Sr2+ > Ba2+, similar to the order for permeation of Ca2+ channels in neurons. The order of potency for enhancement of muscimol responses was Cd2+> Mn2+ > Mg2+, similar to the order for blockade of Ca2+channels in neurons. Neither Ca2+ nor Mg2+ caused accumulation of GABA in the extravesicular space due to increased GABA release or decreased reuptake of GABA by the synaptoneurosomes. The inhibition of muscimol responses by Ca2+ was most likely via an intracellular site of action because additional inhibition could be obtained in the presence of the Ca2+ ionophore, A23187. This confirms electrophysiologic findings in cultured neurons from several species. In contrast, the effects of Cd2+, Mn2+, and Mg2+ may be mediated via blockade of Ca2+ channels or by intracellular sites, although the results of these studies do not distinguish between the two loci. The effects of Zn2+ were also studied, because this divalent cation is reported to have widely divergent effects on GABAA responses. In contrast to other studies, we demonstrate that Zn2+ inhibits GABAA responses in an adult neuronal preparation. Zn2+ produced a concentration-dependent inhibition (limited to 40%) of muscimol responses with an EC50 of 60 μM. The inhibition of muscimol-induced 38Cl? uptake by Zn2+ was noncompetitive. The effect of Zn2+was reduced in the presence of Mg2+ in a competitive or allosteric manner. The portion of GABAA receptors sensitive to Zn2+ may reflect a specific subunit composition in cerebral cortex as previously observed for recombinant GABAA receptors in several expression systems. The modulation of GABAA receptor function by Ca2+ and other divalent cations may play an important role in the development and/or attenuation of neuronal excitability associated with pathologic conditions such as seizure activity and cerebral ischemia.  相似文献   

7.
Leadmium Green is a commercially available, small molecule, fluorescent probe advertised as a detector of free intracellular cadmium (Cd2+) and lead (Pb2+). Leadmium Green has been used in various paradigms, such as tracking Cd2+ sequestration in plant cells, heavy metal export in protozoa, and Pb2+ absorption by vascular endothelial cells. However very little information is available regarding its affinity and selectivity for Cd2+, Pb2+, and other metals. We evaluated the in vitro selectivity of Leadmium Green using spectrofluorimetry. Consistent with manufacturer’s claims, Leadmium Green was sensitive to Cd2+ (KD ~600 nM) and also Pb2+ (KD ~9.0 nM) in a concentration-dependent manner, and furthermore proved insensitive to Ca2+, Co2+, Mn2+ and Ni2+. Leadmium Green also responded to Zn2+ with a KD of ~82 nM. Using fluorescence microscopy, we evaluated Leadmium Green in live mouse hippocampal HT22 cells. We demonstrated that Leadmium Green detected ionophore-mediated acute elevations of Cd2+ or Zn2+ in a concentration-dependent manner. However, the maximum fluorescence produced by ionophore-delivered Zn2+ was much less than that produced by Cd2+. When tested in a model of oxidant-induced liberation of endogenous Zn2+, Leadmium Green responded weakly. We conclude that Leadmium Green is an effective probe for monitoring intracellular Cd2+, particularly in models where Cd2+ accumulates rapidly, and when concomitant fluctuations of intracellular Zn2+ are minimal.  相似文献   

8.
9.
Human serum albumin (HSA) has been shown to bind 2–3 mol of Zn2+, Ni2+, or Cd2+ per mole of protein with apparent dissociation constants (Kd) in the range of 10 μm. Rabbit histidine-rich glycoprotein (HRG) binds 13, 9, and 6 mol of Zn2+, Ni2+, and Cd2+ per mole of protein, respectively, with apparent Kds also near 10 μm. However, the binding of metals by HRG exhibits positive cooperativity, so that the apparent Kds may underestimate HRGs true affinity for metal ions. The relative affinities of HSA and HRG for metal ions were found to be Zn2+ > Ni2+ > Cd2+. In addition, histidine (a serum metal chelator) affected the binding of Ni2+ by both proteins but not that of Zn2+ or Cd2+. At physiological concentrations of HSA (250 μm), HRG (2.5 μm), and histidine (100 μm), HRG bound 36% of the Zn2+, 9% of the Ni2+, and 13% of the Cd2+ at a total metal concentration of 25 μm. Under the same conditions HSA held 37% of the Zn2+, 14% of the Ni2+, and 56% of the Cd2+. Thus, HSA appears to have a lower intrinsic affinity for the three metals than HRG but would be expected to bind a higher proportion of these metals in serum. A specific immunoadsorbent column was prepared and used to study the metal binding by HRG in serum directly. Both 65Zn2+ and 63Ni2+ were associated with HRG in aliquots of rabbit serum after incubation with the corresponding metal ion. This evidence indicates that HRG must be considered as a metal binding component of serum.  相似文献   

10.
11.
Through subcultivations of Thiobacillus thiooxidans WU-79A in autotrophic media in which the concentrations of Cd2+ and Zn2+ were increased successively, Cd2+-resistant (CDR) and Zn2+-resistant strains (ZNR) were obtained. The growth of WU-79A was inhibited by the addition of 25 mM Cd2+ as well as Zn2+. However, CDR and ZNR could grow without any lag phase in media containing 200 mM Cd2+ and 250 mM Zn2+, respectively. CDR and ZNR were able to grow even in media containing up to 400 mM Cd2+ and 600 mM Zn2+, respectively, although they exhibited lag phases. CDR could grow in medium containing up to 250 mM Zn2+, as could ZNR in medium containing up to 200 mM Cd2+. Cd2+-binding and Zn2+-binding proteins were isolated from CDR and ZNR, respectively, by gel filtration and ion exchange chromatography. The molecular weights of both proteins were estimated to be approximately 13,000 by gel filtration. The fact that there was no strong absorption at 280 nm of the proteins suggested that they had few aromatic amino acids. Broad absorption bands which are typical of mercaptide (metal thiolate) complexes were detected. The properties of the proteins were spectrophotometrically similar to those of metallothionein.  相似文献   

12.
Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4 +, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, PO4 3-, SO4 2- and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+ AsO2 -, AsO4 3-, Cd2+, Co2+, CrO4 2−, Cu2+, Hg2+, Ni2+, Pb2+, TeO3 2−, TI+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd2+-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [γ-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson’s disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together. Received 08 August 1997/ Accepted in revised form 01 November 1997  相似文献   

13.
14.
Pistia stratiotes is used for the epuration of domestic sewage in the Biyem Assi phytopurification station. During the process, Fe2+, Mn2+, Zn2+ and Pb2+ are absorbed in substantial amounts by the plant. These metals modify the H+/K+ exchange system at the root level. H+ efflux is inhibited by Fe2+ and by Zn2+ and enhanced by Mn2+ and Pb2+. K+ influx is inhibited by Fe2+, by Zn2+ and by Pb2+ and enhanced by Mn2+. It is shown that the purification capacity ofPistia stratiotes can vary with the composition of the heavy metals in the surrounding medium.  相似文献   

15.
《Experimental mycology》1986,10(2):144-149
Cultures ofAspergillus parasiticus produce the polyketide versicolorin A in response to elevation of the Zn2+ content of the growth medium. With suboptimal Zn2+ (0.8 μM) mycelial growth is about half maximal, and versicolorin synthesis is essentially zero. Inclusion of Cd2+ (1–100 μM) in the Zn2+-limiting growth medium allows optimal growth and stimulates full versicolorin synthesis. Cd2+, like Zn2+, will stimulate versicolorin sysnthesis only when added within the first 30 h after conidial inoculation. The transport system for Cd2+ uptake may be the same as that for Zn2+, as judged byin vivo competition studies. Cd2+ is a competitive inhibitor of Zn2+ uptake, with Ki = 20 μM.  相似文献   

16.
Development of a broad-spectrum fluorescent heavy metal bacterial biosensor   总被引:1,自引:0,他引:1  
Bacterial biosensors can measure pollution in terms of their actual toxicity to living organisms. A recombinant bacterial biosensor has been constructed that is known to respond to toxic levels of Zn2+, Cd2+ and Hg2+. The zinc regulatory gene zntR and zntA promoter from znt operon of E. coli have been used to trigger the expression of GFP reporter protein at toxic levels of these ions. The sensor was induced with 3–800?ppm of Zn2+, 0.005–4?ppm of Cd2+ and 0.001–0.12?ppm of Hg2+ ions. Induction studies were also performed in liquid media to quantify GFP fluorescence using fluorimeter. To determine the optimum culture conditions three different incubation periods (16, 20 and 24?h) were followed. Results showed an increased and consistent fluorescence in cells incubated for 16?h. Maximum induction for Zn2+, Cd2+ and Hg2+ was observed at 20, 0.005 and 0.002?ppm, respectively. The pPROBE-zntR-zntA biosensor reported here can be employed as a primary screening technique for aquatic heavy metal pollution.  相似文献   

17.
In order to evaluate the effect of cadmium (Cd2+) toxicity on mineral nutrient accumulation in potato (Solanum tuberosum L.), two cultivars named Asterix and Macaca were cultivated both in vitro and in hydroponic experiments under increasing levels of Cd2+ (0, 100, 200, 300, 400 and 500 μM in vitro and 0, 50, 100, 150 and 200 μM in hydroponic culture). At 22 and 7 days of exposure to Cd2+, for the in vitro and hydroponic experiment, respectively, the plantlets were separated into roots and shoot, which were analyzed for biomass as well as Cd2+, and macro (Ca2+, K+ and Mg2+) and micronutrient (Cu2+, Fe2+, Mn2+ and Zn2+) contents. In the hydroponic experiment, there was no reduction in shoot and root dry weight for any Cd2+ level, regardless of the potato cultivar. In contrast, in the in vitro experiment, there was an increase in biomass at low Cd2+ levels, while higher Cd2+ levels caused a decrease. In general, Cd2+ decreased the macronutrient and micronutrient contents in the in vitro cultured plantlets in both roots and shoot of cultivars. In contrast, the macronutrient and micronutrient contents in the hydroponically grown plantlets were generally not affected by Cd2+. Our data suggest that the influence of Cd2+ on nutrient content in potato was related to the level of Cd2+ in the substrate, potato cultivar, plant organ, essential element, growth medium and exposure time.  相似文献   

18.
A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd2+, Zn2+, Cu2+, and NaCl stress. Transgenic yeast also accumulated more Cd2+, Zn2+, and NaCl, but not Cu2+. Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd2+) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd2+, Zn2+, Cu2+, and NaCl stress in ThMT3-transgenic yeast. H2O2 levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd2+, Zn2+, Cu2+, and NaCl stress in the transgenic yeast. Cd2+, Zn2+, and Cu2+ increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.  相似文献   

19.
Properties of partially purified NADP-malic enzyme (EC 1.1.1.40) from glumes of developing wheat grains were examined. The pH optimum for enzyme activity was influenced by malate and shifted from 7.3 to 7.6 when the concentration of malate was increased from 2 to 10 mM. The Km values, at pH 7.3, for various substrates were: malate, 0.76 mM; NADP, 20 μM and Mn2+, 0.06 mM. The requirement of Mn2+ cation for enzyme activity could be partially replaced by Mg2+ or Co2+. Mn2+ dependent enzyme activity was inhibited by Pb2+, Ni2+, Hg2+, Zn2+, Cd2+, Al3+ and Fe3+. During the reaction, substrate molecules (malate and NADP) reacted with enzyme sequentially. Activity of malic enzyme was inhibited by products of the reaction viz pyruvate, HCO3? and NADPH2. At a limiting fixed concentration of NADP, these products induced a positive cooperative response to increasing concentrations of malate.  相似文献   

20.
The passive sorption of Pb+2, Cd+2, Zn+2, Co+2, Ni+2, and Mn+2 by isolated corn mitochondria was determined, and, except for Pb+2, the maximum sorption for each cation was about 58 nmol per milligram of protein. Sorption of Pb+2 was apparently ten times greater, but precipitation may have been the cause of this larger value. The effects of Pb+2, Cd+2, Zn+2, Co+2, and Ni+2 on acceptorless rates of electron transport for three substrates were determined. Greater than 50% inhibitions of oxidation were observed for succinate after additions of >0.1 mM Cd+2, Zn+2, or Pb+2: for NADH after additions of >0.5 mM Cd+2 or Zn+2; and for malate + pyruvate after additions of >0.1 mM Cd+2. Some inhibition of the rate of substrate oxidation was observed for most cations at higher concentrations. Coupling, as measured by ADP/O ratios, was inhibited at lowest concentrations by Cd+2 or Zn+2 and at higher concentrations by Co+2 or Ni+2. Substantial swelling of mitochondria oxidizing succinate was observed following additions of O.1 mM Cd+2 or Pb+2, Correlations are drawn between the effects of Pb+2, Cd+2, Zn+2, Co+2, and Ni+2 and their sorption to mitochondrial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号