首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent field studies suggest that it is common in nature for animals to outlive their reproductive viability. Post‐reproductive life span has been observed in a broad range of vertebrate and invertebrate species. But post‐reproductive life span poses a paradox for traditional theories of life history evolution. The only commonly‐cited explanation is the ‘grandmother hypothesis’, which is limited to higher, social mammals. We propose that post‐reproductive life span evolves to stabilize population dynamics, avoiding local extinctions. Predator–prey and other ecosystem interactions tend to produce volatility that can create population crashes and local extinctions. Total fertility rates that exceed the ecosystem's recovery rate contribute to population overshoot, followed by collapse. These local extinctions may constitute a potent group selection mechanism, driving evolution toward controlled rates of population growth, even when there is a significant individual cost. In this paper, we consider the question: what life history characteristics support demographic homeostasis at the least cost to individual fitness? In individual‐based evolutionary simulations, we find that reduction in fertility is sufficient to avoid population instabilities leading to extinction, but that life histories that include senescence can accomplish the same thing at a lower cost to individual fitness. Furthermore, life histories that include the potential for a post‐reproductive period are yet more efficient at stabilizing population dynamics, while minimizing the impact on individual fitness.  相似文献   

2.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness. Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.  相似文献   

3.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history.

Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness.

Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.

  相似文献   

4.
Differences in predation risk may exert strong selective pressures on life history strategies of populations. We investigated the potential for predation to shape male mating strategies in an arboreal folivore, the common brushtail possum (Trichosurus vulpecula Kerr). We predicted that possums in a tropical population exposed to high natural levels of predation would grow faster and reproduce earlier compared to those in temperate populations with lower predation. We trapped a population of possums in eucalypt woodland in northern Australia each month to measure life history traits and used microsatellites to genotype all individuals and assign paternity to all offspring. We observed very high levels of male-biased predation, with almost 60% of marked male possums being eaten by pythons, presumably as a result of their greater mobility due to mate-searching. Male reproductive success was also highly skewed, with younger, larger males fathering significantly more offspring. This result contrasts with previous studies of temperate populations experiencing low levels of predation, where older males were larger and the most reproductively successful. Our results suggest that in populations exposed to high levels of predation, male possums invest in increased growth earlier in life, in order to maximise their mating potential. This strategy is feasible because predation limits competition from older males and means that delaying reproduction carries a risk of failing to reproduce at all. Our results show that life histories are variable traits that can match regional predation environments in mammal species with widespread distributions.  相似文献   

5.
In theory, survival rates and consequent population status might be predictable from instantaneous behavioural measures of how animals prioritize foraging vs. avoiding predation. We show, for the 30 most common small bird species ringed in the UK, that one quarter respond to higher predation risk as if it is mass-dependent and lose mass. Half respond to predation risk as if it only interrupts their foraging and gain mass thus avoiding consequent increased starvation risk from reduced foraging time. These mass responses to higher predation risk are correlated with population and conservation status both within and between species (and independently of foraging habitat, foraging guild, sociality index and size) over the last 30 years in Britain, with mass loss being associated with declining populations and mass gain with increasing populations. If individuals show an interrupted foraging response to higher predation risk, they are likely to be experiencing a high quality foraging environment that should lead to higher survival. Whereas individuals that show a mass-dependent foraging response are likely to be in lower quality foraging environments, leading to relatively lower survival.  相似文献   

6.
A characteristic feature of the life history of humans and some other species of social mammals is a long post-reproductive period. This condition is of a physiological nature in females (menopause), whereas in males it is largely of a behavioral nature. We discuss the hypothesis that old, post-reproductive individuals in these species may act as repositories of acquired knowledge, thereby providing an evolutionary benefit for their group. According to this view, the group's investment into the care for their older members is overcompensated by the benefits gained from the experience of these individuals (“senators”). This phenomenon is suggested to be largely independent from the degree of genetic relatedness within the group. We put forward a list of several necessary preconditions for the senator phenomenon to evolve. The presence or absence of these preconditions can be studied empirically.  相似文献   

7.
Yu  Pei  Iwanami  Tsukuru  Yazaki  Hidemori  Tsubuki  Makoto  Saito  Kaito  Hayashi  Fumio 《Journal of Ethology》2023,41(2):129-139
Journal of Ethology - The chemical defense of insects is effective for avoiding predation, but may carry a cost in terms of life history traits. If chemical defenses require the resources and/or...  相似文献   

8.

Background

Menopause is a seemingly maladaptive life-history trait that is found in many long-lived mammals. There are two competing evolutionary hypotheses for this phenomenon; in the adaptive view of menopause, the cessation of reproduction may increase the fitness of older females; in the non-adaptive view, menopause may be explained by physiological deterioration with age. The decline and eventual cessation of reproduction has been documented in a number of mammalian species, however the evolutionary cause of this trait is unknown.

Results

We examined a unique 30-year time series of killer whales, tracking the reproductive performance of individuals through time. Killer whales are extremely long-lived, and may have the longest documented post-reproductive lifespan of any mammal, including humans. We found no strong support for either of the adaptive hypotheses of menopause; there was little support for the presence of post-reproductive females benefitting their daughter's reproductive performance (interbirth interval and reproductive lifespan of daughters), or the number of mature recruits to the population. Oldest mothers (> 35) did appear to have a small positive impact on calf survival, suggesting that females may gain experience with age. There was mixed support for the grandmother hypothesis – grandoffspring survival probabilities were not influenced by living grandmothers, but grandmothers may positively influence survival of juveniles at a critical life stage.

Conclusion

Although existing data do not allow us to examine evolutionary tradeoffs between survival and reproduction for this species, we were able to examine the effect of maternal age on offspring survival. Our results are consistent with similar studies of other mammals – oldest mothers appear to be better mothers, producing calves with higher survival rates. Studies of juvenile survival in humans have reported positive benefits of grandmothers on newly weaned infants; our results indicate that 3-year old killer whales may experience a positive benefit from helpful grandmothers. While our research provides little support for menopause evolving to provide fitness benefits to mothers or grandmothers, our work supports previous research showing that menopause and long post-reproductive lifespans are not a human phenomenon.  相似文献   

9.
Nest predation is the most important cause of nest failure in most birds and latitudinal differences in nest predation rates and life histories suggest that nest predation has been influential in life history evolution. All else equal, natural selection should favor reduction of nest predation, yet evidence is equivocal. We used Monte Carlo simulations to examine the combined effects of variation in nest predation rates, breeding season length and renesting intervals on the annual number of young fledged. Simulations suggest that selection most strongly favors a reduction in nest predation when breeding seasons are short and predation rates are low (temperate characteristics). Conversely, selection favors shorter renesting intervals when breeding seasons are long and nest predation rates are high (tropical characteristics). Reducing already low rates provides a proportionately greater increase in annual nesting success than does the same reduction when nest predation rates are higher. In some tropical species, individuals increase reproductive success not by avoiding predation in subsequent nesting attempts, which is largely beyond their control, but rather by reducing renesting intervals. We suggest that the emphasis on nest predation avoidance has biased our perspectives for alternative hypotheses of how birds should respond to nest predation and the consequences of those alternatives for life history theory. Similarly to the need to control for phylogenetics in examining life history strategies, future studies must also control for differences in breeding season lengths and renesting intervals to better understand the influence of nest predation on avian life histories.  相似文献   

10.
In populations subject to positive density dependence, individuals can increase their fitness by synchronizing the timing of key life history events. However, phenological synchrony represents a perturbation from a population's stable stage structure and the ensuing transient dynamics create troughs of low abundance that can promote extinction. Using an ecophysiological model of a mass-attacking pest insect, we show that the effect of synchrony on local population persistence depends on population size and adult lifespan. Results are consistent with a strong empirical pattern of increased extinction risk with decreasing initial population size. Mortality factors such as predation on adults can also affect transient dynamics. Throughout the species range, the seasonal niche for persistence increases with the asynchrony of oviposition. Exposure to the Allee effect after establishment may be most likely at northern range limits, where cold winters tend to synchronize spring colonization, suggesting a role for transient dynamics in the determination of species distributions.  相似文献   

11.
Marine stock enhancement is often characterized by poor survival of hatchery-reared individuals due to deficiencies in their fitness, such as a diminished capacity to avoid predators. Field experiments were used to examine predation on Penaeus plebejus, a current candidate for stock enhancement in Australia. We compared overall survival of, and rates of predation on, wild P. plebejus juveniles, naïve hatchery-reared juveniles (which represented the state of individuals intended for stock enhancement) and experienced hatchery-reared juveniles (which had been exposed to natural predatory stimuli). Predation was examined in the presence of an ambush predator (Centropogon australis White, 1790) and an active-pursuit predator (Metapenaeus macleayi Haswell) within both complex (artificial macrophyte) and simple (bare sand and mud) habitats. Overall survival was lower and rates of predation were higher in simple habitats compared to complex habitats in the presence of C. australis. However, the three categories of juveniles survived at similar proportions and suffered similar rates of predation within each individual habitat. No differences in survival and rates of predation were detected among habitats or the categories of juveniles when M. macleayi was used as a predator. These results indicate that wild and hatchery-reared P. plebejus juveniles are equally capable of avoiding predators. Furthermore, exposure of hatchery-reared juveniles to wild conditions does not increase their ability to avoid predators, suggesting an innate rather than learned anti-predator response. The lower predation by C. australis in complex habitats was attributed to a reduction in this ambush predator's foraging efficiency due to the presence of structure. Ecological experiments comparing wild and hatchery-reared individuals should precede all stock enhancement programs because they may identify deficits in hatchery-reared animals that could be mitigated to optimize survival. Such studies can also identify weaknesses in wild animals, relative to hatchery-reared individuals, that may lead to the loss of resident populations.  相似文献   

12.
Extrinsic mortality has a strong impact on the evolution of life‐histories, prey morphology and behavioural adaptations, but for many animals the causes of mortality are poorly understood. Predation is an important driver of extrinsic mortality and mobile animals form groups in response to increased predation risk. Furthermore, in many species juveniles suffer higher mortality than older individuals, which may reflect a lower phenotypic quality, lower competitiveness, or a lack of antipredator or foraging skills. Here we assessed the causes of mortality for 371 radio tagged Siberian jays. This sedentary bird species lives in family groups that contain a breeding pair as well as related and unrelated non‐breeders. Ninety‐five percent of death were due to predation (n = 59 out of 62 individuals) and most individuals were killed by Accipiter hawks. Multivariate Cox proportional hazards models showed that non‐breeders had a lower survival than breeders, but only in territories in managed forest with little visual cover. Examining breeders, only sex influenced survival with males having a lower survival than females. For non‐breeders, juveniles had lower survival than older non‐breeders, and those on managed territories had lower survival than those on unmanaged territories. Additionally, a low feather quality reduced the survival probability of non‐breeders only. Thus, living on managed territories and having a low feature quality affected only non‐breeders, particularly juveniles. These findings add to previous research demonstrating that juvenile Siberian jays acquire critical antipredator skills from experienced group members. Thus, experience can buffer extrinsic mortality, highlighting that group living not only provides safety in numbers, but also provide social opportunities to learn critical life‐skills.  相似文献   

13.
There is considerable variation in cannibalism between different species and also between individuals of different species, although relatively little is known about what creates this variation. We investigated the degree of cannibalism in guppy (Poecilia reticulata) populations originating from high and low predation environments in Trinidad, and also how cannibalism was affected by the presence of refuges. Females from two populations were allowed to feed on juveniles from two populations in aquaria trials. The cannibalism was size-dependent and varied depending on both juvenile and female origin. Low predation females were more efficient cannibals and low predation juveniles were better at avoiding cannibalism compared to high predation guppies when no refuges were present. The high predation females were superior cannibals and the high predation juveniles were better at escaping cannibalism than the low predation guppies when refuges were present. We discuss whether the differences in cannibalism and response to refuge addition relate to predation-induced habitat shifts and differences in the guppies’ natural environment.  相似文献   

14.
Daphnia hyalina is a cladoceran present throughthe whole year except for late summer in Maranhão,a meso-eutrophic reservoir in central Portugal. Apartfrom the influence of food, both vertebrate andinvertebrate predation pressures seem to have aneffect on D. hyalina population dynamics.Enclosure experiments were designed to assess therelative importance of both types of predation. Afterthe summer crash, D. hyalina reached highernumbers in the fishless enclosures than in the lakedespite of high predation pressure upon juveniles byAcanthocyclops robustus. Fish predation upon thelargest individuals, especially large egg bearingfemales, was responsible for the lower fertility ofthe open water population when compared with theenclosure population. In the enclosures an increase intail spine length was observed. The longer tail spineprobably offered protection from copepod predation,allowing at least some of the juveniles to coexistwith their potential predator and reach the adultstage, less susceptible to copepod predation.  相似文献   

15.
Life history variation can often reflect differences in age-specific mortality within populations, with the general expectation that reproduction should be shifted away from ages experiencing increased mortality. Investigators of life history in vertebrates frequently focus on the impact of predation, but there is increasing evidence that predation may have unexpected impacts on population density that in turn prompt unexpected changes in life history. There are also other reasons why density might impact life history independently of predation or mortality more generally. We investigated the consequences of predation and density on life history variation among populations of the Pacific leaping blenny, Alticus arnoldorum. This fish from the island of Guam spends its adult life out of the water on rocks in the splash zone, where it is vulnerable to predation and can be expected to be sensitive to changes in population density that impact resource availability. We found populations invested more in reproduction as predation decreased, while growth rate varied primarily in response to population density. These differences in life history among populations are likely plastic given the extensive gene flow among populations revealed by a previous study. The influence of predation and density on life history was unlikely to have operated independently of each other, with predation rate tending to be associated with reduced population densities. Taken together, our results suggest predation and density can have complex influences on life history, and that plastic life history traits could allow populations to persist in new or rapidly changing environments.  相似文献   

16.
With a series of mathematical models, we explore impacts of predation on a prey population structured into two age classes, juveniles and adults, assuming generalist, age-specific predators. Predation on any age class is either absent, or represented by types II or III functional responses, in various combinations. We look for Allee effects or more generally for multiple stable steady states in the prey population. One of our key findings is the occurrence of a predator pit (low-density ??refuge?? state of prey induced by predation; the chance of escaping predation thus increases both below and above an intermediate prey density) when only one age class is consumed and predators use a type II functional response ??this scenario is known to occur for an unstructured prey consumed via a type III functional response and can never occur for an unstructured prey consumed via a type II one. In the case where both age classes are consumed by type II generalist predators, an Allee effect occurs frequently, but some parameters give also rise to a predator pit and even three stable equilibria (one extinction equilibrium and two positive ones??Allee effect and predator pit combined). Multiple positive stable equilibria are common if one age class is consumed via a type II functional response and the other via a type III functional response??here, in addition to the behaviours mentioned above one may even observe three stable positive equilibria????double?? predator pit. Some of these results are discussed from the perspective of population management.  相似文献   

17.
  1. Warming and predation risk are ubiquitous environmental factors that can modify life histories and population dynamics of aquatic ectotherms. While separate responses to each of these factors are well understood, their joint effects on individual life histories and population dynamics remain largely unexplored. Current theory predicts that the magnitude of prey behavioural, physiological, and life history responses to predation risk should diminish with warming due to the reduced metabolic scope. However, empirical support for this prediction remains equivocal, and experiments covering a substantial proportion of individual prey ontogeny until maturation are lacking.
  2. To fill these gaps, we ran a laboratory experiment to investigate how warming and non-consumptive predation risk influence life history responses in the larvae of the mayfly Cloeon dipterum, an aquatic insect with highly plastic development. We reared larvae of varying initial sizes at three temperatures (21, 24, and 27°C) in a risk-free environment and under predation risk signalled by chemical cues from dragonfly larvae (Aeshna cyanea), and followed their individual survival, growth, and development until emergence.
  3. Some C. dipterum larvae substantially prolonged their development and the proportion of these slow individuals declined rapidly with temperature and increased with predation risk. We attribute this response to cohort splitting, a common life history strategy of aquatic insects and other taxa in unpredictable environment.
  4. Growth, development, and maturation varied predictably with temperature in the fast larvae that did not prolong their development. They grew and developed faster but matured at smaller sizes with increasing temperature. Predation risk tended to slow down individual growth and development in line with the reduced metabolic scope hypothesis, but the differences were relatively minor and observable only at 21°C.
  5. Survival to subimago increased with predation risk, possibly due to indirect effects mediated by dissolved micronutrients, but did not vary significantly with temperature. Survival also tended to be higher in the slow individuals. This partly compensated for a smaller final size relative to the fast individuals and made both strategies comparable in overall fitness.
  6. Our results show that warming may erode individual-level variability in life history responses to predation risk. This implies that warming can synchronise population dynamics and consequently make such populations more vulnerable to unpredictable disturbances.
  相似文献   

18.
Dicyemids (Phylum Dicyemida) are the most common and characteristic endosymbiont living in the renal sac of benthic cephalopod molluscs. Precocious development of a hermaphroditic gonad occurs in the larvae and smaller juveniles of 40 dicyemid species from 17 cephalopod species so far and is the usual phenomenon in dicyemids. Based on the developmental and morphological features of precocious individuals, progenesis (a form of heterochrony) is the appropriate term for such precocious development. In general, progenetic individuals have much lower fecundity than normal ones because of their smaller body size, and therefore, it appears to be a disadvantageous reproductive trait. Nonetheless, the number of progenetic individuals consists of 30%–50% of the population, a relatively large proportion suggesting that the presence of progenetic individuals probably plays an important role in life history strategy. Precocious development significantly reduces growth time and enables early maturation. Progenetic individuals are common in short-living cephalopod species, in which precocious development seems appropriate for dicyemids, enabling fast larval release before the end of the host's life span.  相似文献   

19.
Feral cats are considered to be one of the main harmful invasive species for island species. Adult shearwaters are highly vulnerable to predation by cats. The population of the Yelkouan Shearwater Puffinus yelkouan, a species endemic to the Mediterranean, is predicted to decline, leaving only a few large breeding colonies, due to the invasion of cats. The impact of cats on the Shearwater population of Le Levant Island, one of the major breeding sites for this species, was evaluated by studying cat diet over a 2‐year period. The predation rate obtained was then included in a Shearwater demographic model. Cats preyed upon rabbits, rats and Shearwaters, with a peak of predation on Shearwaters immediately upon their arrival at the colony. Cat predation was heavy and responsible for the yearly death of about 810–3241 birds. This could lead to the extinction of the Le Levant colony within the next four decades and perhaps within just a few years. Cat predation on prospecting individuals, a parameter essential to assess the real impact of predation, may not have an immediate effect on the Shearwater breeding population but can accelerate population extinction. Cat predation must be reduced or removed to prevent the extinction of one of the most important breeding sites for this species.  相似文献   

20.
Determining differences between common and rare species is commonly used to identify factors responsible for rarity. Existing studies, however, suffer from two important drawbacks. First, studies compare species that are closely related phylogenetically but occupy different habitats. Second, these studies concentrate on single life history traits, with unknown relevance for population growth rates. Complete life cycles of one rare and one common Cirsium species sharing the same habitat were compared. Population growth rate was slightly lower in the rare species, translating into a large difference in local extinction probability. Seed predation intensity did not differ between species. However, it can be demonstrated that in connection with the data on complete demography, seed predation is the key factor causing a lower population growth rate in the rare species. These results are the first estimation of factors responsible for commonness or rarity of plants in terms of population growth rate without confounding differences in ecology. They demonstrate that conclusions based on single traits may be misleading and that only a comparison based on a complete life cycle can provide unequivocal evidence for concluding which factors are really those responsible for species commonness or rarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号