首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the complete mitochondrial DNA (mtDNA) sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae). This genome (14,014 bp) is slightly larger than that of Clonorchis sinensis (13,875 bp), but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs), a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P. cervi within the Order Plagiorchiida, but relationships depicted within that order were not quite as expected from previous studies. The complete mtDNA sequence of P. cervi provides important genetic markers for diagnostics, ecological and evolutionary studies of digeneans.  相似文献   

2.
The phylogenetic structure of the genus Niviventer has been studied based on several individual mitochondrial and nuclear genes, but the results seem to be inconsistent. In order to clarify the phylogeny of Niviventer, we sequenced the complete mitochondrial genome of white‐bellied rat (Niviventer andersoni of the family Muridae) by next‐generation sequencing. The 16,291 bp mitochondrial genome consists of 22 transfer RNA genes, 13 protein‐coding genes (PCGs), two ribosomal RNA genes, and one noncoding control region (D‐Loop). Phylogenetic analyses of the nucleotide sequences of all 13 PCGs, PCGs minus ND6, and the entire mitogenome sequence except for the D‐loop revealed well‐resolved topologies supporting that N. andersoni was clustered with N. excelsior forming a sister division with N. confucianus, which statistically rejected the hypothesis based on the tree of cytochrome b (cytb) gene that N. confucianus is sister to N. fulvescens. Our research provides the first annotated complete mitochondrial genome of N. andersoni, extending the understanding about taxonomy and mitogenomic evolution of the genus Niviventer.  相似文献   

3.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   

4.
The complete mitochondrial genome of Eleotris oxycephala was determined to be 16,527 bp in length with (A + T) content of 53%, and it consists of 13 protein-coding genes, 22 tRNAs, 2 ribosomal RNAs, and a control region. The gene composition and the structural arrangement of the E. oxycephala complete mtDNA were identical to most of other vertebrates. Phylogenetic analysis based on different sequences of species of the Gobioidei suborder and different methods showed that E. oxycephala formed a cluster with Eleotris acanthopoma and Eleotridae were divided into two clades. Furthermore, extensive taxon sampling and more molecular information are needed to confirm the phylogenetic relationships among the Gobioidei.  相似文献   

5.
《Genomics》2019,111(6):1258-1265
The mitochondrial genome (mitogenome) can provide important information for understanding phylogenetic analysis and molecular evolution. Herein, we amplified the complete mitogenome sequence of Pelteobagrus fulvidraco. The mitogenome was 16,526 bp in length and included 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes and a non-coding control region (D-loop). Both the organization and location of genes in the mitogenome were consistent with those from Siluriformes fishes previously published in GenBank. The phylogenetic relationships based on Bayesian inference (BI) and Maximum likelihood (ML) methods showed that P. fulvidraco has close relationships with Pelteobagrus eupogon and Tachysurus intermedius, suggesting that P. fulvidraco belongs to Tachysurus. This study provides evidence that Tachysurus, Pseudobagrus and Leiocassis do not form monophyly, but that these three genera form a monophyletic group. Our results provide reference for further phylogenetic research of the Bagridae species.  相似文献   

6.
Chen L  Zhang H H 《农业工程》2012,32(5):232-239
The complete mitochondrial genome sequence of the raccoon dog (Nyctereutes procyonoides) was determined by using the long and accurate polymerase chain reaction. The entire mitochondrial genome sequence is 16,713 bp in length contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and 1 control region. Most mitochondrial genes are encoded on the H strand, except for the ND6 gene and 8 tRNA genes. The base compositions of mitochondrial genomes present clearly A–T skew. All the transfer RNA genes can be folded into the typical cloverleaf-shaped structure except tRNA-Ser (AGY), which lacks the dihydrouridine arm. Protein-coding genes mainly initiate with ATG and terminate with TAA. Some reading frame intervals and overlaps are found in the mitochondrial genome. The control region can be divided into three domains: the extended termination associated sequences (ETASs) domain, the central conserved domain and the conserved sequence blocks (CSBs) domain. Three conserved sequence blocks (CSBs) and one extended termination associated sequences (ETAS-1) is found in the control region. The phylogenetic analysis based on the concatenated data set of 14 genes in the mitochondrial genome of Canidae shows that the raccoon dog has close phylogenetic position with the red fox (Vulpes vulpes) and they constitute a clade which has an equil evolutionary position with the clade formed by the genera Canis and Cuon.  相似文献   

7.
Chinese medaka Oryzias sinensis (Teleostei: Beloniformes) is distributed in China and the western areas of Korea. It differs from the Japanese medaka O. latipes in its morphology and biogeographical distribution in Korea. In this study, we analyzed the complete nucleotide sequence of the mitochondrial genome (mitogenome) of O. sinensis and determined its genomic structure. The complete mitogenome is a circular molecule of 16,654 bp and its structural organization is conserved across diverse vertebrate taxa. On a phylogenetic tree inferred from the nucleotide matrix, partitioned into four regions (i.e., the first and second codon positions of protein-coding genes, and the ribosomal RNA and transfer RNA genes), O. sinensis clustered consistently with O. latipes specimens from China and Korea, with a relatively short branch length, but was separated from O. latipes specimen from Japan. Our findings will allow the resolution of the taxonomic problems of closely related Oryzias species, such as O. sinensis and O. latipes in a future study.  相似文献   

8.
《Genomics》2020,112(3):2154-2163
Bariliine fishes are important components of the ornamental as well as subsistence fishery sectors in India. Many of the species in the genus Barilius are threatened by habitat loss and therefore need to be met with conservation initiatives. Effective conservation measures, however, require clarification of species identities and resolution of the validity of many species currently treated as synonymous or sub-species. The complete mitochondrial genome data provide better insight into phylogenetic information than the short fragment or single gene based analysis. Thus, we have sequenced the complete mitochondrial genome of Barilius malabaricus, one of the important fish species in the fresh water ornamental sector, for better understanding its phylogenetic status. The 16,519 bp mitochondrial genome consists of 37 genes which classifies as 22 tRNA, 13 protein coding and 2 ribosomal RNA genes and a control region. Overall, the mitochondrial genome bears the typical gene order and composition as in other fishes. Further, the COI, cytochrome b and 16S rRNA gene sequences revealed that, B. malabaricus is genetically closer to B. canarensis and B. bakeri compared to other Barilius species. Also, the Barilius species of west flowing rivers in Western Ghats were consistently recovered as a clade distinct from other species. We therefore suggest to retain the genus name Barilius for the species from the Western Ghats until a comprehensive analysis based on both morphological and molecular markers reveals the relationship between species now variously placed in the genera Barilius and Opsarius in greater detail.  相似文献   

9.
Bombycoidea comprises 10 families and 4723 species, and the phylogenetic relationships among families are still in debate. In this study, we have determined the complete mitochondrial genome (mitogenome) of Brahmaea porphyria. The 15,429-bp mitogenome contains a common set of 37 mitochondrial genes including 13 protein-coding genes, 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an inferred control region, and shares the conserved gene rearrangement (trnM-trnI-trnQ) in most ditrysian mitogenomes. Moreover, we analysed the secondary structure for all the tRNA genes of B. porphyria and the preference of codon usage in the PCGs of B. porphyria. The putative 373-bp control region (CR) possesses three types of conserved elements, including ATAGA, Ploy-T stretch, and microsatellite-like elements. A phylogenetic analysis among available Bombycoidea mitogenomes using the concatenated 37 mitochondrial genes appears to support the hypothesis of (Sphingidae+Bombycidae)+Saturniidae and the relatively basal phylogenetic position of Brahmaeidae within Bombycoidea.  相似文献   

10.
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequences of two species of Cistopus, namely C. chinensis and C. taiwanicus, and conducted a comparative mt genome analysis across the class Cephalopoda. The mtDNA length of C. chinensis and C. taiwanicus are 15706 and 15793 nucleotides with an AT content of 76.21% and 76.5%, respectively. The sequence identity of mtDNA between C. chinensis and C. taiwanicus was 88%, suggesting a close relationship. Compared with C. taiwanicus and other octopods, C. chinensis encoded two additional tRNA genes, showing a novel gene arrangement. In addition, an unusual 23 poly (A) signal structure is found in the ATP8 coding region of C. chinensis. The entire genome and each protein coding gene of the two Cistopus species displayed notable levels of AT and GC skews. Based on sliding window analysis among Octopodiformes, ND1 and DN5 were considered to be more reliable molecular beacons. Phylogenetic analyses based on the 13 protein-coding genes revealed that C. chinensis and C. taiwanicus form a monophyletic group with high statistical support, consistent with previous studies based on morphological characteristics. Our results also indicated that the phylogenetic position of the genus Cistopus is closer to Octopus than to Amphioctopus and Callistoctopus. The complete mtDNA sequence of C. chinensis and C. taiwanicus represent the first whole mt genomes in the genus Cistopus. These novel mtDNA data will be important in refining the phylogenetic relationships within Octopodiformes and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of Cephalopoda.  相似文献   

11.
The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.  相似文献   

12.
Wang Y  Guo R  Li H  Zhang X  Du J  Song Z 《Marine Genomics》2011,4(3):221-228
The complete mitochondrial DNA genome of the Sichuan taimen (Hucho bleekeri) was determined by the long and accurate polymerase chain reaction (LA-PCR) and primer walking sequence method. The entire mitochondrial genome of this species is 16,997 bp in length, making it the longest among the completely sequenced Salmonidae mitochondrial genomes. It consists of two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one control region (CR). The gene arrangement, nucleotide composition, and codon usage pattern of the mitochondrial genome are similar to those of other teleosts. A T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region, which were almost identical among the three H. bleekeri individuals examined. Both phylogenetic analyses based on 12 concatenated protein-coding genes of the heavy strand and on just the control region show that H. bleekeri is a basal species in Salmoninae. In addition, Salmo, Salvelinus and Oncorhynchus all represent monophyletic groups, respectively. All freshwater species occupied basal phylogenetic positions, and also possessed various tandem repeats in their mitochondrial control regions. These results support established phylogenetic relationships among genera in Salmonidae based on morphological and molecular analyses, and are consistent with the hypothesis that Salmonidae evolved from freshwater species.  相似文献   

13.
A total of 74 small nuclear RNA (snRNA) genes and 395 genes encoding splicing-related proteins were identified in the Arabidopsis genome by sequence comparison and motif searches, including the previously elusive U4atac snRNA gene. Most of the genes have not been studied experimentally. Classification of these genes and detailed information on gene structure, alternative splicing, gene duplications and phylogenetic relationships are made accessible as a comprehensive database of Arabidopsis Splicing Related Genes (ASRG) on our website.  相似文献   

14.
Blumea balsamifera (L.) DC., a medicinal plant with high economic value in the Asteraceae family, is widely distributed in China and Southeast Asia. However, studies on the population structure or phylogenetic relationships with other related species are rare owing to the lack of genome information. In this study, through high-throughput sequencing, we found that the chloroplast genome of B. balsamifera was 151,170 bp in length, with a pair of inverted repeat regions (IRa and IRb) comprising 24,982 bp, a large single-copy (LSC) region comprising 82,740 bp, and a small single-copy (SSC) region comprising 18,466 bp. A total of 130 genes were identified in the chloroplast genome of B. balsamifera, including 85 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes; furthermore, sequence analysis identified 53 simple sequence repeats. Whole chloroplast genome comparison indicated that the inverted regions (IR) were more conserved than large single-copy and SSC regions. Phylogenetic analysis showed that B. balsamifera is closely related to Pluchea indica. Conclusively, the chloroplast genome of B. balsamifera was helpful for species identification and analysis of the genetic diversity and evolution in the genus Blumea and family Asteraceae.  相似文献   

15.
16.
Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.  相似文献   

17.
18.
Handa H 《Nucleic acids research》2003,31(20):5907-5916
The entire mitochondrial genome of rapeseed (Brassica napus L.) was sequenced and compared with that of Arabidopsis thaliana. The 221 853 bp genome contains 34 protein-coding genes, three rRNA genes and 17 tRNA genes. This gene content is almost identical to that of Arabidopsis. However the rps14 gene, which is a pseudo-gene in Arabidopsis, is intact in rapeseed. On the other hand, five tRNA genes are missing in rapeseed compared to Arabidopsis, although the set of mitochondrially encoded tRNA species is identical in the two Cruciferae. RNA editing events were systematically investigated on the basis of the sequence of the rapeseed mitochondrial genome. A total of 427 C to U conversions were identified in ORFs, which is nearly identical to the number in Arabidopsis (441 sites). The gene sequences and intron structures are mostly conserved (more than 99% similarity for protein-coding regions); however, only 358 editing sites (83% of total editings) are shared by rapeseed and Arabidopsis. Non-coding regions are mostly divergent between the two plants. One-third (about 78.7 kb) and two-thirds (about 223.8 kb) of the rapeseed and Arabidopsis mitochondrial genomes, respectively, cannot be aligned with each other and most of these regions do not show any homology to sequences registered in the DNA databases. The results of the comparative analysis between the rapeseed and Arabidopsis mitochondrial genomes suggest that higher plant mitochondria are extremely conservative with respect to coding sequences and somewhat conservative with respect to RNA editing, but that non-coding parts of plant mitochondrial DNA are extraordinarily dynamic with respect to structural changes, sequence acquisition and/or sequence loss.  相似文献   

19.
Sciaenidae is a diverse, commercially important family. To understand the phylogenetic position of Collichthys niveatus in this family, we present its complete mitochondrial genome sequence. The genome is 16469 bp in length and contains 37 mitochondrial genes (13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) and a control region (CR) as in other bony fishes. Further sequencing for the complete control region was performed on Collichthys lucida. Although the conserved sequence domains such as extend termination associated sequence (ETAS) and conserved sequence block domains (CSB-1, CSB-2 and CSB-3) are recognized in the control region of the two congeneric species, the typical central conserved blocks (CSB-F, CSB-E and CSB-D) could not be detected, while they are found in Miichthys miiuy and Cynoscion acoupa of Sciaenidae and other Percoidei fishes. Phylogenetic analyses do not support the monophyly of Pseudosciaeniae, which is against with the morphological results. C. niveatus is most closely related to Larimichthys polyactis, and Collichthys and Larimichthys may be merged into one genus, based on the current datasets.  相似文献   

20.
Two complete mitochondrial genome sequences for Laminaria longissima (=Saccharina longissima) and Laminaria hyperborea are reported in this study. They had circular mapping organization with slight difference in size (37,628 and 37,976 bp, respectively) and contained almost the same set of mitochondrial genes, including the genes for three rRNAs (23S, 16S, and 5S), 25 tRNAs, 35 known mitochondrial proteins, and three to four Open Reading Frame genes (ORFs). Both mitochondrial genomes exhibited typical gene content and organization of Laminaria mtDNAs except for the existence of ORF157 genes being located between rRNA large subunit gene 5 (rpl5) and ORF129-139 in L. hyperborea as found in that of Laminaria digitata. The phylogenetic analysis based on mitochondrial genomes supported the hypothesis of the split of the genus Laminaria, and the result of this study provided important information on the molecular evolution of Laminaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号