首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To demonstrate that an endochitinase (ChiA74) native to Bacillus thuringiensis can be used to generate chitin‐derived oligosaccharides (OGS) with antibacterial activity against a number of aetiological agents of disease, including bacteria that cause diarrhoeal and emetic syndromes in humans. Methods and Results: The intact chiA74 with its cis elements was cloned into high and moderately high copy number Escherichia coli expression vectors. Functionally secreted ChiA74 was produced, and the endochitinase cleaved substrate colloidal chitin to produce OGS with 3, 5 and 6 degrees of polymerization. The enzyme was active for an extended period of incubation (24 h), but its activity showed a decrement of 73% and 87%, respectively, after 24 h of incubation at 37 and 55°C. OGS showed inhibitory activity against Bacillus cereus, Listeria inoccua, E. coli, Staphylococcus xylosus, Salmonella species, Staphylococcus aureus, Pseudomona aeruginosa, Shigella flexneri, and Proteus vulgaris. Conclusions: Endochitinase ChiA74 is able to stably maintain hydrolytic activity during prolonged incubation in a mix reaction with chitin to produce bioactive OGS with inhibitory activity against important food‐borne pathogenic bacteria. Significance and Impact of the Study: This is the first study showing that an endochitinase (ChiA74) native of the most important bioinsecticide used worldwide (B. thuringiensis), but here produced in E. coli, is able to generate chitin‐derived OGS with antibacterial activity against clinically significant food‐borne pathogenic bacteria.  相似文献   

2.
The endochitinase gene chiA74 from Bacillus thuringiensis serovar kenyae strain LBIT-82 was cloned in Escherichia coli DH5αF′. A sequence of 676 amino acids was deduced when the gene was completely sequenced. A molecular mass of 74 kDa was estimated for the preprotein, which includes a putative 4-kDa signal sequence located at the N terminus. The deduced amino acid sequence showed high degree of identity with other chitinases such as ChiB from Bacillus cereus (98%) and ChiA71 from Bacillus thuringiensis serovar pakistani (70%). Additionally, ChiA74 showed a modular structure comprised of three domains: a catalytic domain, a fibronectin-like domain, and a chitin-binding domain. All three domains showed conserved sequences when compared to other bacterial chitinase sequences. A ca. 70-kDa mature protein expressed by the cloned gene was detected in zymograms, comigrating with a chitinase produced by the LBIT-82 wild-type strain. ChiA74 is active within a wide pH range (4 to 9), although a bimodal activity was shown at pH 4.79 and 6.34. The optimal temperature was estimated at 57.2°C when tested at pH 6. The potential use of ChiA74 as a synergistic agent, along with the B. thuringiensis insecticidal Cry proteins, is discussed.  相似文献   

3.
Aims: To synthesize two heterologous endochitinases in Escherichia coli and demonstrate their potential for applied use in generating antibacterial chitin-derived oligosaccharides (OGS). Methods and Results: Heterologous endochitinase genes, chiA Nima and chiA74, were expressed in E. coli. Endochitinases were secreted by the E. coli export machinery and by ∼20 h maximal chitinolytic activity was observed. The highest chitinolytic activity was observed with ChiA Nima, which produced antibacterial OGS with activities against Enterobacter cloacae, Escherichia coli, Staphylococcus aureus and S. xylosus. Conclusions: It was shown that the export machinery of E. coli is well suited for the secretion of bioactive ChiA74 and ChiA Nima endochitinases, and that the latter can generate antibacterial OGS. Significance and Impact of the Study: Our study suggests that it is feasible to synthesize endochitinases ChiA Nima and ChiA74 codified by E. coli and mass-produce these enzymes in culture supernatants. As signal peptides in native ChiA Nima and ChiA74 were recognized by the protein export molecular apparatus in E. coli, these short peptides could be included as signal sequences for transport in E. coli of other proteins with applied value. This is the first report suggesting that ChiA Nima can be used to produce OGS to control food-borne pathogenic bacteria.  相似文献   

4.
Chitinase A (ChiA) produced by Bacillus thuringiensis subsp. colmeri 15A3 (Bt. 15A3) was expressed in Escherichia coli XL-Blue. The ChiA was purified using Sephadex G-200 and its molecular mass was estimated to be 36 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Detection of chitinase activity on SDS-PAGE after protein renaturation indicated that the molecular mass of the protein band expressing chitinase activity was approximately 72 kDa. This suggests that the dimeric form of ChiA is the enzymatically active form when glycol chitin is used as a substrate. ChiA has optimal activity at 50 °C and retains most of its activity between 20 and 60 °C. The optimum pH for ChiA activity is pH 5.0, and the enzyme is active between pH 4.0 and 8.0. The enzyme activity was significantly inhibited by Ag+ and Zn2+. ChiA significantly inhibited the spore germination of four species of fungi. The median inhibitory concentrations (IC50) of ChiA on the spore germination of Penicillium glaucum and Sclerotinia fuckelian were 11.27 and 10.57 μg/ml, respectively. In surface contamination bioassays, the crude ChiA protein (12.6 mU) reduced the LC50 (50% lethal concentration) of the crystal protein of Bt. 15A3 against the larvae of Spodoptera exigua and Helicoverpa armigera.  相似文献   

5.
Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to ‘graze’ on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan “plaque” formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.  相似文献   

6.
It is commonly known that bacteria may produce antibiotics to interfere with the normal biological functions of their competitors in order to gain competitive advantages. Here we report that Bacillus thuringiensis suppressed the quorum-sensing-dependent virulence of plant pathogen Erwinia carotovora through a new form of microbial antagonism, signal interference. E. carotovora produces and responds to acyl-homoserine lactone (AHL) quorum-sensing signals to regulate antibiotic production and expression of virulence genes, whereas B. thuringiensis strains possess AHL-lactonase, which is a potent AHL-degrading enzyme. B. thuringiensis did not seem to interfere with the normal growth of E. carotovora; rather, it abolished the accumulation of AHL signal when they were cocultured. In planta, B. thuringiensis significantly decreased the incidence of E. carotovora infection and symptom development of potato soft rot caused by the pathogen. The biocontrol efficiency is correlated with the ability of bacterial strains to produce AHL-lactonase. While all the seven AHL-lactonase-producing B. thuringiensis strains provided significant protection against E. carotovora infection, Bacillus fusiformis and Escherichia coli strains that do not process AHL-degradation enzyme showed little effect in biocontrol. Mutation of aiiA, the gene encoding AHL-lactonase in B. thuringiensis, resulted in a substantial decrease in biocontrol efficacy. These results suggest that signal interference mechanisms existing in natural ecosystems could be explored as a new version of antagonism for prevention of bacterial infections.  相似文献   

7.
Bacillus thuringiensis subsp. kurstaki HD-73 was transformed with the homologous endochitinase gene chiA74 of B. thuringiensis subsp. kenyae LBIT-82 under the regulation of its own promoter and Shine–Dalgarno sequence. The plasmid, pEHchiA74, which harbors chiA74, was detected by southern blot analysis and showed high segregational stability when the recombinant strain was grown in a medium without antibiotic. The recombinant bacterium transformed with pEHchiA74 showed an improvement in chitinolytic activity three times that of the wild-type strain. Expression of ChiA74 did not have any deleterious effect on the crystal morphology and size, but sporulation and Cry1Ac production in rich medium (nutrient broth with glucose) was reduced by approximately 30%. No significant increase in the toxicity of the transformant bacterium toward Plutella xylostella was detected using the same amount of total protein. However, it is possible that ChiA74 synthesis compensated for the decrease in net Cry1Ac synthesis and toxicity observed with the recombinant strain.  相似文献   

8.
Representatives of several categories of bacteria were added to soil to determine which of them might elicit responses from the soil protozoa. The various categories were nonobligate bacterial predators of bacteria, prey bacteria for these predators, indigenous bacteria that are normally present in high numbers in soil, and non-native bacteria that often find their way in large numbers into soil. The soil was incubated and the responses of the indigenous protozoa were determined by most-probable-number estimations of total numbers of protozoa. Although each soil was incubated with only one species of added bacteria, the protozoan response for the soil was evaluated by using most-probable-number estimations of several species of bacteria. The protozoa did not respond to incubation of the soil with either Cupriavidus necator, a potent bacterial predator, or one of its prey species, Micrococcus luteus. C. necator also had no effect on the protozoa. Therefore, in this case, bacterial and protozoan predators did not interact, except for possible competition for bacterial prey cells. The soil protozoa did not respond to the addition of Arthrobacter globiformis or Bacillus thuringiensis. Therefore, the autochthonous state of Arthrobacter species in soil and the survival of B. thuringiensis were possibly enhanced by the resistance of these species to protozoa. The addition of Bacillus mycoides and Escherichia coli cells caused specific responses by soil protozoa. The protozoa that responded to E. coli did not respond to B. mycoides or any other bacteria, and vice versa. Therefore, addition to soil of a nonsoil bacterium, such as E. coli, did not cause a general increase in numbers of protozoa or in protozoan control of the activities of other bacteria in the soil.  相似文献   

9.
Purified K1 polysaccharide enhanced the virulence of non-K1Escherichia coli species when given by orogastric feeding to neonatal rats. Neonatal rats developedE. coli bacteremia when K1 polysaccharide was given concomitantly with non-K1E. coli, whereasE. coli bacteremia did not develop when non-K1E. coli was given alone.E. coli K1 species did cause bacteremia and meningitis when fed to neonatal rats. The mechanism by which k1 polysaccharide enhances virulence can be studied with this model of bacteremia development in neonatal rats.  相似文献   

10.
Streptomyces cholesterol oxidase was produced in Escherichia coli by a modification of the cholesterol oxidase gene (choA′) in which the native codons for the precursor NH2-terminal region and the ribosome binding site were substituted for those favored by E. coli. The choA′ gene was expressed under the control of the lac or tac promoter in a multiple copy plasmid vector, although no expression of the native choA gene from Streptomyces was observed in E. coli. E. coli cells carrying the plasmid, pCo117, produced 2-fold more cholesterol oxidase intracellularly during 18-h culture than did the producing strain of Streptomyces sp. SA-COO cultured for 4 d. The NH2-terminal amino acid sequence of cholesterol oxidase produced by E. coli appeared to be processed between Ala20 and Ala21 of the precursor enzyme, while the Streptomyces enzyme was processed between Ala42 and Asp43. Based on the facts that the cholesterol oxidase was stable, could be assayed rapidly, and no endogenous cholesterol oxidase activity was found in any enteric bacteria, we developed two widely applicable, new promoter-probe vectors posessing the choA′ gene, multiple cloning sites, and either a low or high copy number plasmid. Since these plasmids can replicate in enteric bacteria, the new plasmid vectors have a great potential for use in enteric bacteria without the isolation of Cho mutants.  相似文献   

11.
The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins in E. coli without the need for in vitro refolding.  相似文献   

12.
The composition of the lipopolysaccharides from E. coli K12 P678 and from a mutant strain PM61 was investigated. No difference was found between the lipopolysaccharides of both strains. These bacteria belong to the CR34 serologic type in the group of E. coli K12.  相似文献   

13.
The characteristics of xylose isomerase biosynthesis in the bacteria Arthrobacter nicotianae BIM B-5, Erwinia carotovora subsp atroseptica jn42xylA, and Escherichia coli HB101xylA have been studied. The bacteria produced the enzyme constitutively. Out of the carbon sources studied, D-glucose and D-xylose were most favorable for the biosynthesis of xylose isomerase in E. carotovora subsp. atroseptica, but the least appropriate in terms of the enzyme production efficiency in E. coli. Minimum and maximum levels of xylose isomerase formation in A. nicotianae were noted, respectively, during D-xylose and sucrose utilization. An addition to the D-xylose-containing nutrient medium of 0.1–1.5% D-glucose did not affect the enzyme synthesis in A. nicotianae, but suppressed it in Erwinia carotovora subsp. atroseptica (by 7% at the highest concentration) and Escherichia coli (by 63 and 75% at concentrations of 0.1 and 1.0%, respectively). The enzyme proteins produced by the bacteria exhibited the same substrate specificity and electrophoretic mobility (PAGE) as xylose isomerase A. nicotianae, although insignificant differences in the major physicochemical properties were noted.  相似文献   

14.
The prevalence of antimicrobial drug-resistant bacteria is typically highest in younger animals, and prevalence is not necessarily related to recent use of antimicrobial drugs. In dairy cattle, we hypothesize that antimicrobial drug-resistant, neonate-adapted bacteria are responsible for the observed high frequencies of resistant Escherichia coli in calves. To explore this issue, we examined the age distribution of antimicrobial drug-resistant E. coli from Holstein cattle at a local dairy and conducted an experiment to determine if low doses of oxytetracycline affected the prevalence of antimicrobial drug-resistant E. coli. Isolates resistant to tetracycline (>4 μg/ml) were more prevalent in <3-month-old calves (79%) compared with lactating cows (14%). In an experimental trial where calves received diets supplemented with or without oxytetracycline, the prevalence of tetracycline-resistant E. coli was slightly higher for the latter group (P = 0.039), indicating that drug use was not required to maintain a high prevalence of resistant E. coli. The most common resistance pattern among calf E. coli isolates included resistance to streptomycin (>12 μg/ml), sulfadiazine (>512 μg/ml), and tetracycline (>4 μg/ml) (SSuT), and this resistance pattern was most prevalent during the period when calves were on milk diets. To determine if prevalence was a function of differential fitness, we orally inoculated animals with nalidixic acid-resistant strains of SSuT E. coli and susceptible E. coli. Shedding of SSuT E. coli was significantly greater than that of susceptible strains in neonatal calves (P < 0.001), whereas there was no difference in older animals (P = 0.5). These data support the hypothesis that active selection for traits linked to the SSuT phenotype are responsible for maintaining drug-resistant E. coli in this population of dairy calves.  相似文献   

15.
Bacillus circulans WL-12, a yeast and fungal cell wall lytic bacterium, secretes a variety of polysaccharide degrading enzymes into the culture medium. When β-1,3-glucanase was induced with pachyman, a β-1,3-glucose polymer obtained from the tree fungus Poria cocus Wolf, six distinct active molecules of the enzyme with different molecular weights were detected in the culture supernatant of this bacterium. Molecular cloning of one of the β,3-gIucanase genes into E. coli was achieved by transforming E. coli HB101 cells with recombinant plasmids composed of chromosomal DNA fragments prepared from B. circulans WL-12 and the plasmid vector pUC 19. A recombinant plasmid containing 4.4 kb of inserted DNA in the Pst I site of pUC 19, designated as pNT003, conferred the ability to degrade pachyman on E. coli cells. The presence of pNT003 was harmful for E. coli cells and caused cell lysis, especially at higher temperatures of cultivation. β,3-Glucanase activity detected in E. coli was mainly recovered in the periplasmic fraction when cell lysis did not occur. SDS-PAGE analysis revealed that the periplasmic fraction contained four active molecules of β-1,3-glucanase which corresponded to four of the six active molecules produced by B. circulans WL-12.  相似文献   

16.
17.
The unique bacterial enzyme phosphatidylglycerol: prolipoprotein diacylglyceryl transferase (Lgt) is the least studied enzyme of the ubiquitous bacterial lipoprotein synthetic pathway, mostly due to the low abundance of the enzyme. So far, Lgt has been studied to a limited extent in gram-negative bacteria, mainly in Escherichia coli. We, for the first time, report the isolation of an adequate amount of Lgt from the gram-positive lactic acid bacteria, Lactococcus lactis and compare this wild-type bacterial enzyme with the E. coli enzyme. The L. lactis Lgt, when purified by cationic-exchange chromatography, showed a 20-fold increase in the specific activity compared to that of the load, and 75% of the total Lgt activity loaded was recovered. Kinetically, L. lactis Lgt was found to be similar to the E. coli enzyme with matching Km and Vmax, whereas the specific activity of the L. lactis enzyme was about 20 times less than that of the E. coli enzyme. Comparative bioinformatic analysis of L. lactis, E. coli and Staphylococcus aureus Lgt revealed that the conserved and catalytically important His-103 residue in E. coli Lgt, was altered to Tyr in L. lactis. Investigations showed that other bacteria where this alteration is visible, form a diversion within the gram-positive bacteria in evolution. Further analysis revealed Mycobacterium smegmatis to be the species which evolved with the alteration of His to Tyr.  相似文献   

18.
Soil was incubated with various species of bacteria, Bacillus subtilis, or Bacillus thuringiensis spores and crystals. These were added to serve as potential prey for indigenous, copper-resistant, nonobligate bacterial predators of bacteria in the soil. Alternatively, the soil was incubated with soluble nutrients or water only to cause potential indigenous prey cells to multiply so the predator cells would multiply. All of these incubation procedures caused excessive multiplication of some gram-negative bacteria in soil. Even greater multiplication, however, often occurred for certain copper-resistant bacterial predators of bacteria that made up a part of the gram-negative response. Incubation of the soil with copper per se did not give these responses. In most cases, the copper-resistant bacteria that responded were Cupriavidus necator, bacterial predator L-2, or previously unknown bacteria that resembled them. As was the case for C. necator and L-2, these new bacteria did not use glucose, had white colonies, produced copper-related growth initiation factor (GIF), and attacked B. thuringiensis spores on laboratory media. The results were different, however, when B. thuringiensis spores and crystals per se were added to the soil. The copper-resistant bacterial response in the soil did not, to any extent, include C. necator-like bacteria. Instead, the main copper-resistant bacterial predators that developed had yellow colonies and did not resemble C. necator or L-2 in other ways. They were not seen before, and they did not develop on the addition of B. subtilis spores to soil. Apparently, they could not produce a C. necator-like GIF. Nevertheless, they did respond very quickly to B. thuringiensis spores and crystals in soil, as if a GIF of some sort were involved. These results suggest that, under various conditions of soil incubation, gram-negative bacterial predators of bacteria multiply and that several copper-resistant types among them can be detected, counted, and isolated by plating dilutions of the soil onto media containing excess copper.  相似文献   

19.
Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the 14C-labeled crystalline polymeric substrates 14C chitin nanowhiskers and 14C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki(obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki(obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation.  相似文献   

20.
Autotransporters are the most common virulence factors secreted from Gram-negative pathogens. Until recently, autotransporter folding and outer membrane translocation were thought to be self-mediated events that did not require accessory factors. Here, we report that two variants of the autotransporter plasmid-encoded toxin are secreted by a lab strain of Escherichia coli. Biophysical analysis and cell-based toxicity assays demonstrated that only one of the two variants was in a folded, active conformation. The misfolded variant was not produced by a pathogenic strain of enteroaggregative E. coli and did not result from protein overproduction in the lab strain of E. coli. Our data suggest a host-specific factor is required for efficient folding of plasmid-encoded toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号