首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive species are regarded as a biological pressure to natural aquatic communities. Understanding the factors promoting successful invasions is of great conceptual and practical importance. From a practical point of view, it should help to prevent future invasions and to mitigate the effects of recent invaders through early detection and prioritization of management measures. This study aims to identify the environmental determinants of fish invasions in Mediterranean-climate rivers and evaluate the relative importance of natural and human drivers. Fish communities were sampled in 182 undisturbed and 198 disturbed sites by human activities, belonging to 12 river types defined for continental Portugal within the implementation of the European Union''s Water Framework Directive. Pumpkinseed sunfish, Lepomis gibbosus (L.), and mosquitofish, Gambusia holbrooki (Girard), were the most abundant non-native species (NNS) in the southern river types whereas the Iberian gudgeon, Gobio lozanoi Doadrio and Madeira, was the dominant NNS in the north/centre. Small northern mountain streams showed null or low frequency of occurrence and abundance of NNS, while southern lowland river types with medium and large drainage areas presented the highest values. The occurrence of NNS was significantly lower in undisturbed sites and the highest density of NNS was associated with high human pressure. Results from variance partitioning showed that natural environmental factors determine the distribution of the most abundant NNS while the increase in their abundance and success is explained mainly by human-induced disturbance factors. This study stresses the high vulnerability of the warm water lowland river types to non-native fish invasions, which is amplified by human-induced degradation.  相似文献   

2.
Small Mediterranean streams are shaped by predictable seasonal events of flooding and drying over an annual cycle, and present a strong inter and intra-annual variation in flow regime. Native fish assemblages in these streams are adapted to this natural environmental variability. The distinction of human-induced disturbances from the natural ones is thus a crucial step before assessing the ecological status of these streams. In this aim, the present study evaluates the effects of natural hydrological variability on fish assemblages from disturbed and least disturbed sites in small intermittent streams of south Portugal. Data were collected over the last two decades (1996–2011) in 14 sites located in the Guadiana and Sado river basins. High variability of fish assemblages was strongly dependent on human-induced disturbances, particularly nutrient/organic load and sediment load, and on natural hydrological variability. Natural hydrological variability can act jointly with anthropogenic disturbances, producing changes on fish assemblages structure of small intermittent streams. In least disturbed sites, despite the natural disturbances caused by inter-annual rainfall variations (including drought and flood events), fish assemblages maintained a long-term stability and revealed a high resilience. On the contrary, disturbed sites presented significantly higher variability on fish assemblages and a short and long-term instability, reflecting a decrease on the resistance and resilience of fish assemblages. Under these conditions, fish fauna integrity is particularly vulnerable and the ecological assessment may be influenced by natural hydrological variations. High hydrological variability (especially if it entails high frequency of dryer years and meaningful cumulative water deficit) may affect the impact of the human pressures with significant and consistent consequences on fish assemblage composition and integrity. In this study, fish metrics that maximize the detection of human degradation and minimize the response to natural variability were based on the relative abundance of native species (insectivorous species, eurytopic species, water column species, native lithophilic species), relative abundance of species with intermediate tolerance and relative number of exotic species. Results highlight the importance of assessing temporal variability on stream biomonitoring programs and emphasize the need to improve the assessment tools, accounting for long-term changes in fish assemblages, namely by selecting the most appropriate fish metrics that respond to anthropogenic disturbances but exhibit low natural temporal variability, essential both in the characterization of the biological reference conditions and in the development of fish indexes in intermittent streams.  相似文献   

3.
Macrophytes are an important component of aquatic ecosystems and are used widely within the Water Framework Directive (WFD) to establish ecological quality. In the present paper we investigated macrophyte community structure, i.e., composition, richness and diversity measures in 60 unimpacted stream and river sites throughout Europe. The objectives were to describe assemblage patterns in different types of streams and to assess the variability in various structural and ecological metrics within these types to provide a basis for an evaluation of their suitability in ecological quality assessment. Macrophyte assemblage patterns varied considerably among the main stream types. Moving from small-sized, shallow mountain streams to medium-sized, lowland streams there was a clear transition in species richness, diversity and community structure. There was especially a shift from a predominance of species-poor mosses and communities dominated by liverwort in the small-sized, shallow mountain streams to more species-rich communities dominated by vascular plants in the medium-sized, lowland streams. The macrophyte communities responded to most of the features underlying the typological framework defined in WFD. The present interpretation of the WFD typology may not, however, be adequate for an evaluation of stream quality based on macrophytes. First and most important, by using this typology we may overlook an important community type, which is characteristic of small-sized, relatively steep-gradient streams that are an intermediate type between the small-sized, shallow mountain streams and the medium-sized, lowland streams. Second, the variability in most of the calculated metrics was slightly higher when using the pre-defined typology. The consistency of these results should be investigated by analysing a larger number of sites. Particularly the need of re-defining the typology to improve the ability to detect impacts on streams and rivers from macrophyte assemblage patterns should be investigated. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

4.
Biological indicators based on fish assemblage characteristics are used to assess stream condition worldwide. Fish-based bioassessment poses challenges in Southern New England, the USA, due to the effects of within-watershed thermal gradients on fish assemblage types, low regional species richness, and lack of minimally disturbed sites. Dual multi-metric indices (MMI) of biological condition were developed for wadeable streams based on fish assemblage characteristics sampled across watershed landscapes with varying levels of human disturbance. A coldwater MMI was developed using streams with drainage area of ≤15 km2, and a mixed-water MMI for streams with drainage areas of >15 km2. For each MMI development, candidate metrics represented by ecological classes were sequentially tested by metric range, within-year precision, correlation with stream size, responsiveness to landscape-level human disturbances, and redundancy. Resultant coldwater and mixed-water MMI were composed of 5 and 7 metrics, respectively. Stream sites tended to score similarly when the two MMI were applied to transitional sites, i.e., drainage areas of 5–40 km2. However, some sites received high scores from the mixed-water MMI and intermediate scores from the coldwater MMI. It was thus difficult to ascertain high-quality mixed-water streams from potential coldwater streams which currently support mixed-water assemblages due to ecological degradation. High-quality coldwater streams were restricted to stream sites with drainage areas ≤15 km2. The newly developed fish-based MMI will serve as a useful management tool and the dual-MMI development approach may be applicable to other regions with thermal gradients that transition from coldwater to warmwater within watersheds.  相似文献   

5.
This study investigated the fish fauna in the subtropical Sinos River, considering species addition and replacement and the occurrence of indicator species along a longitudinal gradient. Patterns in fish assemblage ordination evaluated by correspondence analysis reflected the headwater and lowland river reaches. Uppermost sampling stations were characterized by species with restricted occurrence and medium abundance, whereas in the lowland most species were captured only once during the surveyed period and in low abundance. Species addition prevailed between the headwater sampling stations and both addition and replacement occurred between the lowland sampling stations. Nine species were characteristic for the headwater reach and 14 species for the lowland reach.  相似文献   

6.
Ecosystem goods and services in streams are impaired when their biotic communities are degraded by anthropogenic stressors. An index of biotic integrity (IBI) translates community structure into a standardized ecoregion-specific stream health score. Documenting stream health is especially important in the Northern Glaciated Plains (NGP) Ecoregion, which is undergoing rapid landscape alterations through increased agriculture production. Our objectives were to develop a fish IBI and validate candidate reference sites for NGP wadeable perennial streams. Fish were sampled from 54 sites (consisting of reference sites, known-condition least and most disturbed sites, and random sites) during summers 2006–2011. Candidate metrics were sorted into nine metric classes based on attributes of fish assemblage form and function. Metric values were screened using metric range, signal-to-noise ratios, responsiveness to disturbance, and redundancy tests until each metric class contained only those metrics most responsive to anthropogenic stressors. The final IBI consisted of six metrics that were reflective of prairie stream fish assemblages, and differentiated between known-condition least and most disturbed sites. The mean reference sampling site IBI scores were found to be similar to both least and most disturbed sites (Mann–Whitney U-test; P < 0.05). Twelve reference site scores were below the NGP's median (69), whereas the other 11 sites were above the median and were representative of least disturbed conditions. We now have developed a standardized bioassessment tool for evaluating stream health, as well as a baseline for long-term monitoring in a dynamic ecoregion.  相似文献   

7.
1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.  相似文献   

8.
Whilst the biological traits composition of invertebrate assemblages has been successfully used to monitor temperate rivers, it has been seldom tested in tropical areas. We compared the trait composition of Ephemeroptera assemblages (five traits, 21 modalities) in three categories of headwater streams of FG: reference (undisturbed) sites, sites formerly impacted by gold-mining, and sites currently impacted by gold-mining. Differences in macroinvertebrate assemblage according to environmental characteristics and disturbance were evaluated using correspondence analysis and MANOVA. Among the considered traits, food acquisition, respiration and locomotion detected both past and current disturbance associated with gold-mining in headwaters. A fuzzy correspondence analysis showed a significant segregation of currently gold-mined, formerly gold-mined, and reference sites according to species traits. Shifts in trait composition were mostly related to changes in assemblage composition. Interestingly, no significant decline in diversity indices was observed in formerly gold-mined sites compared to the reference sites, 2 years after abandonment, while the taxonomic and trait composition of communities changed at these sites. These results support the case for further fundamental quantification of species traits, and for the inclusion of sensitive, trait-related metrics in upcoming multimetric indices for the assessment of river health.  相似文献   

9.
1. Periphytic diatoms, macrophytes, benthic macroinvertebrates and fish were sampled with standard methods in 185 streams in nine European countries to compare their response to degradation. Streams were classified into two main stream type groups (i.e. lowland, mountain streams); in addition, the lowland streams were grouped into four more specific stream types. 2. Principal components analysis with altogether 43 environmental parameters was used to construct complex stressor gradients for physical–chemical, hydromorphological and land use data. About 30 metrics were calculated for each sample and organism group. Metric responses to different stress types were analysed by Spearman Rank Correlation. 3. All four organism groups showed significant response to eutrophication/organic pollution gradients. Generally, diatom metrics were most strongly correlated to eutrophication gradients (85% and 89% of the diatom metrics tested correlated significantly in mountain and lowland streams, respectively), followed by invertebrate metrics (91% and 59%). 4. Responses of the four organism groups to other gradients were less strong; all organism groups responded to varying degrees to land use changes, hydromorphological degradation on the microhabitat scale and general degradation gradients, while the response to hydromorphological gradients on the reach scale was mainly limited to benthic macroinvertebrates (50% and 44% of the metrics tested correlated significantly in mountain and lowland streams, respectively) and fish (29% and 47%). 5. Fish and macrophyte metrics generally showed a poor response to degradation gradients in mountain streams and a strong response in lowland streams. 6. General recommendations on European bioassessment of streams were derived from the results.  相似文献   

10.
The hypothesis of convergence takes the deterministic view that community (or assemblage) structure can be predicted from the environment, and that the environment is expected to drive evolution in a predictable direction. Here we present results of a comparative study of freshwater fish assemblages from headwater streams in four continents (Europe, North America, Africa and South America), with the general objective of testing whether these assemblages display convergent structures under comparable environmental conditions (i.e. assemblage position in the stream longitudinal continuum). We tested this hypothesis by comparing species richness and trophic guilds of those stream fish assemblages represented in available data from multiple sites on each continent. Independent of phylogenetic and historical constraints, fish assemblage richness and trophic structure in the four continents converged along the stream continua to a substantial degree. For the four continents, assemblage richness increased, the proportion of invertivorous species decreased, and the proportion of omnivorous species increased from upstream to downstream, supporting theoretical predictions of the river continuum concept. However, the herbivore/detritivore and piscivore guilds were virtually absent from our small European and North American stream sites, unlike our African and South American stream sites. This divergence can be linked to differences in energy availability between temperate and tropical systems.  相似文献   

11.
1. The effects of seasonal inundation on the biology of fishes on floodplains of large Amazonian rivers are well studied. However, the small seasonal changes in headwater streams are generally considered to have little effect on fish assemblages. 2. In this study, we analysed seasonal changes in the species composition and abundance of fish in small Amazonian forest streams. We sampled fish with hand and seine nets in headwater streams in a 10 000 ha terra‐firme forest reserve near Manaus, Brazil. Each stream was surveyed at the end of the 2005 dry season, at the beginning of the 2006 rainy season and at the beginning of the 2006 dry season, by means of a standardized sampling effort. 3. The numbers of individuals and species caught were higher in the dry season, but rarefaction analyses indicated that greater species numbers could have been due simply to the larger number of individuals caught. 4. Between the dry and rainy season, the direction of changes in species composition in multivariate space varied among sites, especially for quantitative (abundance) data. However, the observed variation among sites was the less than expected if the directions of change were random. 5. Fish assemblages in the second dry season were more similar to those in the previous dry season than expected if changes in species composition among seasons were random. This indicates that a general seasonal pattern in fish assemblages can be detected, despite the existence of some erratic site‐specific changes. 6. Most of the species that showed large seasonal variations in density occupy temporary ponds during the rainy season, when much of the valley is inundated and pond networks form adjacent to streams. Short‐duration lateral migrations to these ponds may play an important role in the seasonal fish‐assemblage dynamics in Amazonian headwater streams. 7. Our results contrast with previous studies on small Amazonian streams, which have found little seasonal change in fish assemblages, and highlight the importance of the abundance of common species as an indicator of general fish assemblage structure in biological monitoring programmes.  相似文献   

12.
Stream fish are expected to be significantly influenced by climate change, as they are ectothermic animals whose dispersal is limited within hydrographic networks. Nonetheless, they are also controlled by other physical factors that may prevent them moving to new thermally suitable sites. Using presence–absence records in 655 sites widespread throughout nine French river units, we predicted the potential future distribution of 30 common stream fish species facing temperature warming and change in precipitation regime. We also assessed the potential impacts on fish assemblages' structure and diversity. Only cold-water species, whose diversity is very low in French streams, were predicted to experience a strong reduction in the number of suitable sites. In contrast, most cool-water and warm-water fish species were projected to colonize many newly suitable sites. Considering that cold headwater streams are the most numerous on the Earth's surface, our results suggested that headwater species would undergo a deleterious effect of climate change, whereas downstream species would expand their range by migrating to sites located in intermediate streams or upstream. As a result, local species richness was forecasted to increase greatly and high turnover rates indicated future fundamental changes in assemblages' structure. Changes in assemblage composition were also positively related to the intensity of warming. Overall, these results (1) stressed the importance of accounting for both climatic and topographic factors when assessing the future distribution of riverine fish species and (2) may be viewed as a first estimation of climate change impacts on European freshwater fish assemblages.  相似文献   

13.
黄山陈村水库上游河源溪流的鱼类群落及其纵向梯度格局   总被引:1,自引:0,他引:1  
确定鱼类群落的分布格局及其对人类活动的响应,是合理保护、恢复和管理鱼类多样性的基础。基于2011年5月和10月自黄山陈村水库上游3条河源溪流共39个样点的调查数据,比较研究了溪流间鱼类群落及其纵向梯度格局的异同,着重探讨了人类活动对溪流鱼类群落纵向梯度格局的影响。研究结果显示,同人为干扰较轻的舒溪相比,人为干扰严重的浦溪和麻溪中水宽、底质和植被覆盖率等局域栖息地条件显著变化,这造成了后者的鱼类多样性显著下降及物种组成的显著变化,主要表现为敏感性的地方物种(如宽鳍鱲、光唇鱼、原缨口鳅等)数量减少、耐受性的广布物种(如泥鳅、麦穗鱼、高体鰟鲏等)数量增多。舒溪的鱼类物种数及其组成均与海拔显著相关,但这种"海拔-鱼类群落"关系在麻溪和浦溪中削弱甚至消失。底质、植被覆盖率对舒溪鱼类群落具有重要影响,但对浦溪和麻溪鱼类群落却无显著影响。研究结果表明,在子流域空间尺度上,诸如城镇化发展、土地利用、河道治理等人类活动可通过对局域栖息地条件的影响,导致溪流鱼类多样性下降及其物种组成的变化,破坏鱼类群落的纵向梯度格局,并改变栖息地与鱼类群落之间的联系。  相似文献   

14.
1. Biological resilience is of heightened concern in increasingly anthropogenic landscapes. Quantification of faunal resilience across a wide range of spatial scales and geographical areas is necessary to understand factors influencing the rate and degree of recovery, especially in fragmented ecosystems. 2. We evaluated the recovery of a riverine fish assemblage from a major diesel oil pipeline spill and associated fish kill in 37 km of the Reedy River, South Carolina, U.S.A. The fish assemblage was monitored at four disturbed sites within the fish kill zone and one upstream, undisturbed reference site over a 112‐month (9.3‐year) period following the disturbance. We used non‐metric multidimensional scaling (NMS) ordination to evaluate change in fish assemblage structure among sites and to determine the degree of recovery in assemblage structure. 3. NMS ordination of species relative abundance in two dimensions represented 93% of the total variation in fish assemblage structure among samples and illustrated recovery of the fish assemblage. Initial dissimilarity in assemblage structure was evident between the disturbed sites and the reference site, reflecting high mortality from the oil spill. The disturbed sites as a group increased in similarity to the reference assemblage with time, while the reference assemblage remained relatively stable. Strongest similarity in assemblage structure between the disturbed group and the reference group was achieved by October 2000 (52 months post‐disturbance), indicating recovery from the oil spill. Remaining variation in assemblage structure was consistent with longitudinal site position and comparable to that of an undisturbed reference river, attributable to inherent longitudinal variation along the 37‐kilometre river section. 4. Recovery rate among sites varied in relation to proximity and connectivity to recolonisation sources on a landscape scale. Recovery of the uppermost disturbed site was faster than the other disturbed sites because of its proximity to the undisturbed main stem fish assemblage, whereas the three most downstream sites were slower to recover largely because of isolation by anthropogenic barriers. These observations illustrate the influence of fragmentation on fish assemblage resilience at large spatial scales.  相似文献   

15.
1. A multimetric index of fish assemblage integrity was developed and similarity analyses were conducted on fish species in two central Indian rivers and the effects of distance from municipal and industrial effluents on those indices then evaluated.
2. Five metrics from Karr et al . (1986 , Illinois Natural History Survey Special Publication 5 , Urbana, IL) were adopted: intolerant species richness, % omnivorous individuals, % top carnivore individuals, total number of individuals and % individuals with anomalies. Seven new metrics (native species richness, native family richness, benthic species richness, water column species richness, % non-native individuals, % tolerant individuals and % herbivorous individuals) were added.
3. Non-native individuals represented 1–55% of the assemblages at sampled sites which held fish.
4. Fish were present at eleven sites and not collected at two sites, despite heavy metal concentrations exceeding U.S. Environmental Protection Agency acute criteria at all sites.
5. Two types of metric scoring were examined. The traditional 5–3–1 method showed the same pattern as continuous scoring from 0 to 10, but produced a higher integrity class at one site.
6. Scores on our modified index of fish assemblage integrity increased with distance downstream from a major effluent source in each river. Jaccard similarity scores between the least disturbed downstream site and all other sites decreased with increasing distance and disturbance.
7. It was concluded that Karr's original index and its theoretical foundations are easily adaptable, even to an ichthyofauna containing no species, and only two families (Cyprinidae, Poeciliidae), in common with the midwestern United States.  相似文献   

16.
We describe a simple empirical modeling approach for determining least-disturbed conditions for the great rivers of the Upper Mississippi River basin: Missouri, Upper Mississippi, and Ohio Rivers. We used multivariate analysis to identify reference strata (reaches for which a single reference expectation was appropriate) on each river. Strata included the Upper Missouri, Lower Missouri, impounded Upper Mississippi, unimpounded Upper Mississippi, and the Ohio River. We created a multimetric stressor gradient for each stratum using a suite of site- and landscape-scale metrics. Site-scale metrics included water chemistry, aquatic and riparian habitat, and human disturbance metrics. Landscape-scale metrics included land use, land cover, and proximity to human disturbance. The gradient was scaled from 0 (least stressed) to 1 (most stressed). Multimetric indices of condition based on fish assemblages for the Lower Missouri and Upper Mississippi River were responsive to stressor gradients based on 18–24 abiotic stressor metrics. Ohio River fish assemblages were responsive to a hand-picked three-metric gradient. We used the y-intercept of quantile regression to predict the fish index value for a stressor gradient value of 0 (the fish index value at a site with the lowest mean stressor gradient score in the reference stratum) which we designated as least-disturbed condition for the fish index for that stratum. We trisected the difference between predicted least-disturbed condition (ceiling value) and a floor value set at the 5th percentile of the sample to create thresholds for three condition classes: least-disturbed, intermediate, and most-disturbed. Based on the derived condition class thresholds for the fish index, 10% (by length) of the Lower Missouri was in least-disturbed condition, compared to 14% of the Ohio River and 19% of the impounded Upper Mississippi River. The index of condition exhibited longitudinal variation that was associated with the location of major urban areas along each river. We conclude that empirical modeling based on an abiotic stressor gradient can provide an alternative approach for deriving internal reference expectations for great rivers with few, if any, minimally disturbed sites.  相似文献   

17.
Implementation of the Water Framework Directive requires tools for measuring and monitoring the ecological status of aquatic ecosystems. Several indices are in use in the Iberian Peninsula, although there has been little comparison among them. We sampled the fish assemblage and limnological features of the Tordera stream (NE Spain) quarterly from September 2001 to May 2003 to evaluate the usefulness of several fish metrics and to compare habitat quality and biotic indices currently in use. Data for eight biotic and abiotic indices for this and three other Catalan river basins were also compiled in order to analyse the relationships among indices. In the Tordera stream, fish abundance and richness increased with stream order except in the last sampling site that had the lowest fish abundance owing to the effects of drought and water abstraction. Although most indices were positively correlated, some displayed low or null correlations particularly for the Tordera basin which is more affected by water abstraction and less by pollution; a commonly used physico-chemical index (ISQA) was the least correlated. In a regional fish index (IBICAT) under development, the brown trout (Salmo trutta) has been previously considered as introduced in the Tordera basin. Here, we report an old published record that demonstrates that trout was present before 1845 and we argue that its status should be considered as uncertain given the current information available. Whether brown trout is treated as native or introduced to this river basin has profound effects on the results of fish metrics because of its dominance in the upper reaches. We briefly discuss the role of introduced species, particularly in headwater streams, in the development of fish indices. Our study exemplifies the need for careful, basin-specific assessment of native/introduced status in the development of fish metrics. Handling editor: K. Martens  相似文献   

18.
Growth and maximum size of stream fishes can be highly variable across populations. For salmonid fishes in streams, individuals from populations confined to headwater streams often exhibit small size at maturity in comparison to populations with access to main-stem rivers. Differences in prey size, prey availability, and metabolic constraints based on temperature may explain patterns of maximum size and growth. In this study, cutthroat trout from headwater stream populations that were isolated above a waterfall were compared to individuals from populations in similar sized streams without a movement barrier and from large main-stem rivers. Cutthroat trout from smaller streams with or without a movement barrier were significantly smaller at a given age than fish from main-stem rivers, where individuals were able to achieve a much larger maximum size. Comparisons of invertebrate drift abundance and size in the three types of streams revealed that drift size did not differ between stream categories, but was highest per volume of water in large main-stem rivers. Across all stream types, prey abundance declined from summer to fall. Temperature declined over the course of the season in a similar manner across all stream types, but remained relatively high later in the season in main-stem river habitats. Prey availability and temperature conditions in main-stem rivers may provide more optimal growing conditions for fish as individuals increase in size and become constrained by prey availability and temperature conditions in small streams. Maintaining connectivity between small spawning and rearing tributary streams and main-stem river habitats may be critical in maintaining large-bodied populations of stream salmonids.  相似文献   

19.
1. Dam removal has great potential for restoring rivers and streams, yet limited data exist documenting recovery of associated biota within these systems following removals, especially on larger systems. This study examined the effects of a dam breach on benthic macroinvertebrate and fish assemblages in the Fox River, Illinois, U.S.A. 2. Benthic macroinvertebrates and fish were collected above and below the breached dam and three nearby intact dams for 1 year pre‐ and 3 years post‐breach (2 years of additional pre‐breach fish data were obtained from previous surveys). We also examined the effects of the breach on associated habitat by measuring average width, depth, flow rate and bed particle size at each site. 3. Physical habitat at the former impoundment (IMP) became comparable to free‐flowing sites (FF) within 1 year of the breach (width and depth decreased, flow rate and bed particle size increased). We also found a strong temporal effect on depth and flow rate at all surveyed sites. 4. Following the breach, relative abundance of Ephemeroptera, Plecoptera and Trichoptera (largely due to hydropsychid caddisflies) increased, whereas relative abundance of Ostracoda decreased, in the former IMP to levels comparable to FF sites. High variation in other metrics (e.g. total taxa, diversity) precluded determination of an effect of the breach on these aspects of the assemblage. However, non‐metric multidimensional scaling (NMDS) ordinations indicated that overall macroinvertebrate assemblage structure at the former IMP shifted to a characteristically FF assemblage 2 years following the breach. 5. Total fish taxa and a regional fish index of biotic integrity became more similar in the former IMP to FF sites following the breach. However, other fish metrics (e.g. biomass, diversity, density) did not show a strong response to the breach of the dam. Ordinations of abundance data suggested the fish assemblage only slightly shifted to FF characteristics 3 years after the breach. 6. Effects of the breach to the site immediately below the former dam included minor alterations in habitat (decreased flow rate and increased particle size) and short‐term changes in several macroinvertebrate metrics (e.g. decreased assemblage diversity and EPT richness for first post‐year), but longer‐term alterations in several fish metrics (e.g. decreased assemblage richness for all three post‐years; decreased density for first two post‐years). However, NMDS ordinations suggested no change to overall assemblage structure for both macroinvertebrates and fish following the breach at this downstream site. 7. Collectively, our results support the effectiveness of dam removal as a restoration practice for impaired streams and rivers. However, differences in response times of macroinvertebrates and fish coupled with the temporal effect on several habitat variables highlight the need for longer‐term studies.  相似文献   

20.
The Volga, the largest river in Europe, has experienced multiple stressors from human activities. Recently we showed that its upper course (about 500 km, from its source to Tver) still has large sections with low impact and a natural type-specific potamal flora and fauna. Our present research in the East European lowlands aim to define reference conditions for mid-sized to large lowland rivers in order to build a basis for future management and conservation. Three monitoring sites were selected based on the results from intensive sampling in 2005. In subsequent field campaigns between 2006 and 2010 regular surveys were carried out each year in summer and additional ones in spring. A taxon-rich macroinvertebrate fauna, including several rare potamal relict species, was recorded and the data was used to provide an overview of annual and interannual variation in community indices and metrics. The conditions described for the headwaters of the Volga River system can be used as a reference state for medium-sized and large lowland rivers in regions where reference sites of these types are lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号