首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Projections from thalamic neurons to the visual (area 17) and parietal association cortex (area 7) were investigated in cats by means of retrograde axonal transport of fluorescent dyes. Pulvinar neurons may be divided into three groups on the basis of their connections with these areas: those projecting to area 7 (the largest (the largest group of cells), those projecting to area 17 (the smaller group), and others sending out axons to two cortical areas at the same time (a few isolated units). The two first groups only were found in the posterolateral thalamus. Divergence between axonal collaterals of pulvinar neurons may be responsible for parallel routes of information transmission to the visual and association cortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 513–520, July–August, 1990.  相似文献   

2.
Intercortical connections of primary sensory (visual, auditory, somatosensory) areas with the parietal association cortex were studied in cats by the retrograde axonal transport of horseradish peroxidase and the Fink-Heimer silver impregnation of degenerated fibers techniques. This combined study revealed the shape, size, and intracortical location of cells connecting the primary sensory areas monosynaptically with the parietal cortex and also the distribution of preterminals and terminals of the fibers of these cells in the parietal association cortex. The greatest number of cells forming connections with area 7 of the parietal association cortex was shown to occur in visual area V1, and with area 5 in somatosensory area S1. Besides pyramidal neurons tagged with horseradish peroxidase, which were located mainly in layers II–IV, a few tagged stellate and fusiform cells also were found. The results supplement and confirm data on afferent connections of the parietal association cortex in cats.M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 3–6, January, 1981.  相似文献   

3.
Afferent connections of the nucleus lateralis posterior (NLP) of the thalamus and area 7 of the parietal cortex with the retrosplenial region of the limbic cortex and hippocampus were studied in rats with retrograde axon transport of horseradish peroxidase. It was shown that the NLP receives ipsilateral projections from area 29d neurons, while area 7 receives ipsilateral axons from area 29d and 29c neurons. It was found that associations of the retrosplenial region with associative cortex are far more pronounced than with associative thalamus. Moreover, the afferent connections of area 7 with area 29d are more numerous than with area 29c. We disclosed no projections of areas 29a and 29b to thalamoparietal system structures. In addition to neocortical input from the limbic cortex, area 7 receives afferent fibers from the archicortex; neurons situated in hippocampus area CA1 are the source of these projections.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy Academy of Sciences, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 647–655, November–December, 1991.  相似文献   

4.
The effect of auditory cortex blockade on response patterns of parietal association cortex neurons responding to different frequency tones was investigated in the cat. Blockade was produced by two methods: bilateral isolation and application of a 6% Nembutal solution to the auditory cortex surface. Frequency threshold curves were plotted for all test neurons. The majority of test neurons (84%) displayed one or two characteristic frequencies before blockade, as against only 63% of all neurons responding following blockade. Changes also affect the range of frequencies at which the cells could respond. Virtually all test neurons responded to application of a broad spectrum of frequencies under normal conditions. After blockade of the auditory cortex 69% of neurons no longer responded to tones above 8–10 kHz. This would suggest that mainly information on high frequency tones is transmitted via the auditory cortex. The question of where acoustic information for parietal association cortex neurons mostly originates is also discussed; association thalamic nuclei are thought to be the main source.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 354–360, May–June, 1986.  相似文献   

5.
Distribution of neurons forming projections to the parietal association cortex and spinal cord in the cat locus coeruleus (LC) was investigated by means of horseradish peroxidase retrograde transport and catecholamine histofluorescence techniques. Neurons projecting to the parietal cortex were found to be located mainly dorsally within the LC; largest numbers were observed on frontal plane P-1.0. Cells forming projections to the spinal cord were found in the ventral locus coeruleus; highest numbers of these were noted on frontal plane P-3.0. Labeled neurons were also identified in the midbrain reticular formation, pons, and medulla when applying horseradish peroxidase to the parietal cortex and spinal cord. Neurons projecting to the neocortex and spinal cord make up two different populations in the locus coeruleus, indistinguishable on grounds of neuronal morphological characteristics. It was concluded that the cat parietal association cerebral cortex, in common with the spinal cord, receives direct afferent inputs from the locus coeruleus and the reticular formation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 112–121, January–February, 1989.  相似文献   

6.
To study the possible pathways along which visual signals reach a visual zone discovered by the writers in the cat frontal cortex in the ventral bank of the cruciate sulcus, horseradish peroxidase was injected into a site previously identified by physiological experiments. Stained neurons were discovered in visual areas of the cortex (lateral suprasylvian and ectosylvian), in the parietal cortex (areas 5 and 7), and also in small numbers in the prefrontal and limbic cortex. Stained neurons were found in the following nuclei in the thalamus: n. medialis dorsalis, intralaminar nuclei (nn. centralis lateralis, paracentralis, centralis medialis), nn. ventralis medialis, anteromedialis, and reuniens. Many stained neurons were found in the claustrum and a few in the substantia grisea centralis in the midbrain. The principal sources of inputs to the cortical area investigated are thus centers of the visual system or parts of the brain directly connected with it.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Brain Institute, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 43–49, January–February, 1985.  相似文献   

7.
It was shown during experiments on cats undergoing surgery under ketamine-induced anesthesia and immobilized with myorelaxin that applying trains of stimuli to the locus coeruleus (LC) produces an effect on 79% of parietal cortex neurons. This manifests as inhibition lasting 300–700 msec or a 16–32% decline in the activity rate of neurons with background activity. Hyperpolarization of 5–7 mV lasting 120–500 msec preceded by a latency of 30–90 msec was noted in such neurons as well as "silent" cells during intracellular recording. Duration of the inhibitory pause in neuronal background activity induced by transcallosal stimulation (TCS) increased by 50–200 msec under the effects of conditioned stimuli applied to the LC. Duration of the IPSP triggered by TCS likewise increased (by 50–100 msec) under the effects of LC stimulation. It was concluded that the effects of stimulating the LC on neuronal activity in the parietal cortex may manifest either directly, as inhibition of background activity and hyperpolarization, or else as modulation of influences exerted by other neurotransmitters.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 486–494, July–August, 1990.  相似文献   

8.
Composite and unitary EPSPs of red nucleus neurons evoked by stimulation of the sensomotor and association parietal cortex and nucleus interpositus of the cerebellum were studied in acute experiments on cats anesthetized with pentobarbital. A monosynaptic connection was shown to exist between not only the sensomotor, but also the association cortex, and rubrospinal neurons, in which unitary EPSPs appeared during stimulation of the association cortex after a latent period of 1.5–2.7 msec, with a peak rise time of 1.1–3.1 msec and an amplitude of 0.22–0.65 mV. Analysis of the temporal characteristics of the unitary EPSP suggested that synapses formed by fibers from the association cortex occupy a position nearer the soma than synapses formed by axons of sensomotor cortical cells.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 67–74, January–February, 1984.  相似文献   

9.
The compound nature of EPSP occurring in response to stimulation of the sensorimotor area of the cerebral cortex and the association area of the parietal cortex was shown during acute experiments on cats anesthetized by pentobarbital using an intracellular recording technique. The monosynaptic nature of the two first components of EPSP produced by corticofugal impulses spreading at the average rate of 18.5 and 7.5 msec, respectively, was established. It is postulated that these EPSP components are produced by activating the slow conducting pyramidal and corticorubral neurons. In a portion of rubrospinal neurons the first component of EPSP produced by corticofugal impulses was marked by a fast-rising phase and reflected electrophysiological activation of axosomatic synapses. Findings are discussed with regard to mechanisms reorganizing cortical synaptic inputs to the red nucleus neurons.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 665–672, September–October, 1985.  相似文献   

10.
Projections from the parietal cortex (areas 5 and 7) to subdivisions of the sensori-motor cortical region were investigated in cats using axonal degeneration techniques. Differences between the density of distribution of association fibers proceeding from these areas were found within the parietal and sensorimotor cortex. Area 5 projects mainly to the posterolateral portion of the cruciate sulcus (areas 4fu and 4) and to fields 4y, 4sfu, 6iffu, 6aa, and 6ab to a lesser extent. Area 7 is connected mainly to the medial portion of the lower lip of the cruciate sulcus (areas 6iffu, 6aa, and 6ab). Somewhat fewer fibers proceed to areas 4fu and 4. Fewer projections proceed from the parietal cortex to the somatosensory than to the motor region. Only a few single fibers connect the primary somatosensory region (fields 2, 3a, and 3b) with area 5, while area 7 does not project into this area. Neither field 5 nor 7 projects to the secondary somatosensory cortical area.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 319–326, May–June, 1988.  相似文献   

11.
Unit activity was recorded from two parietal areas of the cat neocortex in semichronic experiments. Cell responses to presentation of adequate stimuli of different modalities and to direct electrical stimulation of various cortical zones were studied. About 4% of neurons of the Clare-Bishop area did not respond to visual stimulation. Cells responding to stimuli of different modalities were found in the Clare-Bishop area. A high percentage of cells in this area responded to direct electrical stimulation of area 17. In the association area (area 7) 27% of neurons tested responded to visual stimuli, but only a very small relative number of cells (compared with responding neurons of the Clare-Bishop area) responded to stimulation of the primary sensory areas. Electrical stimulation of area 7 inhibited evoked and spontaneous unit activity in the Clare-Bishop area. The hypothesis that these areas are the association representation of two different sections of the visual system — retino-geniculocortical and retino-tecto-thalamocortical — is discussed.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 612–620, November–December, 1981.  相似文献   

12.
In experiments on mollusks (Planorbis corneus) the topical organization of outputs of neurons RPal and RPa2 of the right parietal ganglion was investigated. Outputs were identified by coherence analysis of accumulated electrical activity in dissected nerves during activation of the above neurons. The analysis was based on a number of features described in this paper. Axons of the test neurons were found to be present in the left and right pallial nerves; polysynaptic pathways activated by these neurons also were discovered. The topical organization of outputs of the test neurons was shown to be invariant for different preparations.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 458–463, July–August, 1984.  相似文献   

13.
In acute experiments on cats anesthetized with chloralose and nembutal interaction between visual, auditory, and electrodermal stimuli in neurons of the parietal association cortex was studied. Two types of interaction were found; the first characterized by inhibition or by inhibition followed by facilitation of the response to the test stimulus, the second by facilitation or by facilitation followed by inhibition of spontaneous impulses. Interaction between stimuli of different modalities was shown to depend on the properties of the neuron. In polysensory neurons ability to interact was much higher than in bimodal or monomodal neurons.M. Gorkii Donetsk Medical Institute. Kemerovo Medical Institute. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 223–229, May–June, 1976.  相似文献   

14.
Inhibitory components in the response evoked by presentation of mobile visual stimuli in neurons belonging to the lateral suprasylvian area of the cerebral cortex were investigated in cats. It was demonstrated by comparing poststimulus histograms of neuronal response to movement in two opposite directions that the location of discharge centers within the receptive fields changed in relation to movement direction. No spatial area giving rise to the inhibitory component of response could be found in any of the neurons with monotone stationary structure of their receptive fields. Findings from experiments involving techniques of stimulating a test area of the receptive field separately indicated that inhibitory components of response in neurons of the lateral suprasylvian area with monotone organization of the receptive field could represent inhibitory after-response following the neuronal excitation produced by the visual stimulus traveling across this field.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 299–308, May–June, 1987.  相似文献   

15.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

16.
Responses in 160 neurons of the cat parietal cortex were investigated during the performance of instrumental food reflex (lever pressing) during experiments involving presentation of a conditioned acoustic stimulus. Discharge rate changed in 49% of neurons during the period preceding the conditioned reflex movement. Three basic types of cell with an excitatory response pattern were discovered apart from a small group showing suppression of activity, each differently involved in the process of conditioned reflex movement performance. Excitation arose in neurons of the first type 200±52.9 msec (average) before the onset of the conditioned reflex movement, reaching its peak discharge rate as the animal placed its paw on the lever. The former parameter was 605±54.2 msec for the second type of neuron, with firing rate peaking between the start of electromyographic response and the completion of lever pressing. The same parameter measured 1,000–2,000 msec in the third type and activation took the form of a diffuse increase in discharge rate without a clear-cut peak occurring during performance of the instrumental reflex. Findings would suggest the involvement of the parietal cortex neuronal system in the triggering as well as the follow-through of conditioned reflex motion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 223–231, March–April, 1987.  相似文献   

17.
Unit responses in area 17 of the visual cortex to stimulation of the lateral geniculate body and optic tract were studied in experiments on unanesthetized cats immobilized with D-tubocurarine. Of the neurons tested, 53.6% responded to stimulation of the lateral geniculate body. In 92% of these cells the responses were orthodromic with latent periods of between 2 and 12.5 msec. Most cells responded with latent periods of 2.0–2.5, 3.0–3.5, and 4.0–4.5 msec, corresponding to latent periods of the components of the electropositive wave of the primary response. Antidromic responses to stimulation of the lateral geniculate body were given by 8% of neurons. The difference between the latent periods of responses of the same visual cortical neurons to stimulation of the optic tract and lateral geniculate body was 0.1–1.8 msec, but for most neurons (55.8%) it was 0.5–1 msec. The histograms of response latencies of visual cortical neurons to stimulation of the above-mentioned formations were found to be similar. It is concluded that the optic radiation contains three principal groups of fibers with conduction velocities of 28.5–16.6, 11.7–8.9, and 7.4–6.0 m/sec, respectively.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 589–596, November–December, 1975.  相似文献   

18.
A comparative study of neuronal response in separate cortical columns of the somatosensory cortex (the barrel field area) was made in unanesthetized partially curarized white rats under various circumstances: during passive deflection of immobile vibrissa, unhindered volitional sweeping movement of the vibrissae, and during movement induced by stimulating the motor cortex and facial muscles. Differences in the response of the same neurons emerged under these different experimental situations. Different groups of neurons — responding before, during, and after volitional vibrissa movements were observed. Such response is thought to be triggered by different afferent trains reaching cortical column neurons from sources including the motor cortex, the vibrissa follicle receptors, and facial muscles.Institute of Neurocybernetics, State University, Rostov-on-Don. State University, Simferopol. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 235–242, March–April, 1990.  相似文献   

19.
In experiments on curarized cats unit responses in the dorsal lateral geniculate body to stimulation of various zones in area 17 of the visual cortex were analyzed. Of all cells tested 69% were found to respond antidromically and 8% orthodromically; in 7.6% of cells IPSPs occurred either after an initial antidromic spike or without it. The velocities of conduction of excitation along the corticopetal fibers of the optic radiation varied from 28 to 4.3 m/sec, but the three commonest groups of fibers had conduction velocities of 28–19, 14–12, and 10–9.5 m/sec. A difference between latent periods of antidromic responses of the same neurons was found to stimulation of different zones of the visual cortex; this indicates that axons of geniculo-cortical fibers split into several branches which form contacts with several neurons in area 17 of the visual cortex. The degree and possible mechanisms of cortical influences on neurons of the lateral geniculate body are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 243–249, May–June, 1976.  相似文献   

20.
Properties of EPSP, evoked in efferent neurons of the parietal associative cortex by stimulation of the cerebellar nuclei, were studied in acute experiments on anesthetized and immobilized cats; intracellular recording was used. The neurons were identified by their antidromic activation after stimulation of the motor cortex, pontinen.n. proprii, or red nucleus. The effects of stimulation of the cerebellar nuclei were of oligo- and polysynaptic nature. The latencies of cerebellofugal EPSP correlated with the latencies of antidromic activation, and correlations were significant both in the cases when the effects of stimulation of separate efferent projections (cortico-cortical, cortico-pontine, or cortico-rubral) and the effects of stimulation of separate cerebellar nuclei were analyzed. The functional role of the efferent systems of the parietal associative cortex and significance of functional parameters of the neurons constituting these systems are discussed.Neirofiziologiya/Neurophysiology, Vol. 27, No. 3, pp. 190–198, May–June, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号