首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-N-acetyl-d-glucosaminidase (NAGase, EC.3.2.1.52), a composition of the chitinases, catalyzes the cleavage of N-acetylglucosamine polymers into N-acetylglucosamine. In this paper, the effects of mercuric ion on the activity of NAGase from Penaeus vannamei for the hydrolysis of pNP-NAG have been studied. The results show that HgCl2 can lead to irreversible inactivation to this enzyme. The inactivation process follows a first-order reaction and the inactivation rate constants have been determined. The relationship between the inactivation rate constants and HgCl2 concentration has been studied and the result shows that only one molecule of HgCl2 binds to the enzyme molecule to lead the enzyme lose its activity. Moreover, the conformational changes of the enzyme inactivated by HgCl2 were studied by following changes in the intrinsic fluorescence emission and ultraviolet absorption spectra.  相似文献   

2.
Cysteine residues in prawn (Penaeus vannamei) β-N-acetyl-d-glucosaminidase (NAGase, EC 3.2.1.52) have been modified by p-chloromercuribenzoate (PCMB). The results show that sulfhydryl group is essential for the activity of the enzyme. Inactivation kinetics of the enzyme by mercuric chloride (HgCl2) has been studied using the kinetic method of the substrate reaction during inactivation of enzyme previously described by Tsou. The kinetic results show that the inactivation of the enzyme is an irreversible reaction. The microscopic rate constants for the reaction of Hg2+ with free enzyme and with the enzyme-substrate complex are determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by Hg2+. The above results suggest that the cysteine residue is essential for activity.  相似文献   

3.
Sarcoplasmic reticulum (SR), Ca2+ plus Mg2+-ATPase, and Ca2+-ionophore were obtained from white rabbit skeletal muscles. Methylmercury inhibited the Ca2+ plus Mg2+-ATPase and Ca2+-transport but had no effect on the Ca2+-ionophore. Mercuric chloride inhibited all three functions (i.e., ATPase, transport and ionophoric activity). The mechanism of HgCl2 inhibition of the Ca2+-ionophore was by competition with Ca2+ for Ca2+-ionophoric site whereas its inhibition of the enzyme and Ca2+-transport was due to the blockage of essential sulfhydryl (--SH) groups. Ca2+ plus Mg2+-ATPase and Ca2+-transport were more sensitive to methylmercury than to HgCl2. Acetylcholine receptor (AChR) was obtained for the electric organ of T. californica. Methylmercury inhibited the ACh binding to AChR WITH Ki = 5.7 - 10(-6) M. This effect was not due to mercuric ion alone since mercuric chloride up to 10(-4) M did not affect ACh binding to AChR. It is concluded that: the Ca2+ plus Mg2+-ATPase and Ca2+-transport contain --SH groups essential for their activity, and that the two functions are tightly coupled; the Ca2+-ionophore contains no --SH groups essential for its activity; CH3HgCl inhibition of Ca2+ plus Mg2+-ATPase and Ca2+-transport is partly due to its reactivity with --SH groups in hydrophobic environment; the Ca2+-transport is inhibited by HgCl2 through two processes, one which is the blockage of --SH groups and another which is the inhibition of the Ca2+-ionophoric site; and the inhibition of ACh binding to AChR is due to the blockage of --SH groups in hydrophobic environment, which is inaccessible to Hg2+. Our data present for the first time a molecular basis for the myopathy associated with mercurial compounds toxicity.  相似文献   

4.
The zinc ion in bovine heart cytochrome c oxidase can be completely depleted from the enzyme with mercuric chloride without denaturing the protein. The metal atom stoichiometry of 5Cu/4Fe/0Zn/2Mg obtained for the enzyme following HgCl2 treatment indicates that this depletion is highly selective. Zinc depletion exposes one cysteine on subunit VIa and one cysteine on subunit VIb for N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-diamine (1,5-I-AEDANS) labelling, suggesting that the zinc plays a structural role in the protein by providing a bridge between these two subunits. Although the treatment of cytochrome c oxidase with mercuric chloride inhibits the steady-state activity of the enzyme, subsequent removal of the Hg2+ bound to cysteine residues by 1,5-I-AEDANS significantly reverses the inhibition. This latter result indicates that the removal of the zinc itself does not alter the steady-state activity of the enzyme.  相似文献   

5.
In order to test an alternative selectable marker system for the production of transgenic peanut plants (Arachis hypogaea), the bacterial mercuric ion reductase gene, merA, was introduced into embryogenic cultures via microprojectile bombardment. MerA reduces toxic Hg(II) to the volatile and less toxic metallic mercury molecule, Hg(0), and renders its source Gram-negative bacterium mercury resistant. A codon-modified version of the merA gene, MerApe9, was cloned into a plant expression cassette containing the ACT2 promoter from Arabidopsis thaliana and the NOS terminator. The expression cassette also was inserted into a second vector containing the hygromycin resistance gene driven by the UBI3 promoter from potato. Stable transgenic plants were recovered through hygromycin-based selection from somatic embryo tissues bombarded with the plasmid containing both genes. However, no transgenic somatic embryos were recovered from selection on 50-100 micromol/L HgCl2. Expression of merA as mRNA was detected by Northern blot analysis in leaf tissues of transgenic peanut, but not in somatic embryos. Western blot analysis showed the production of the mercuric ion reductase protein in leaf tissues. Differential responses to HgCl2 of embryo-derived explants from segregating R1 seeds of one transgenic line also were observed.  相似文献   

6.
3,5-Dihydroxyphenyl decanoate (DPD) is found to inhibit the diphenolase activity of tyrosinase from mushroom (Agaricus bisporus). The effects of DPD on the diphenolase activity of mushroom tyrosinase have been studied. The results show that the enzyme activity decreases very slowly with an increase in DPD concentrations at lower concentrations of DPD (between 5 and 60 microM). But at higher concentrations of DPD, DPD can strongly inhibit the diphenolase activity of the enzyme and the inhibition is irreversible. The IC50 value was estimated to be 96.5 microM. The inhibition mechanism of DPD has been investigated and the results show that DPD can bind to the free enzyme molecule and enzyme-substrate complex and lose the enzyme activity completely. The inhibition kinetics has been studied in detail by using the kinetic method of the substrate reaction described by Tsou. The microscopic rate constants of the enzyme inhibited by DPD at higher concentrations have been determined.  相似文献   

7.
The poorly known mechanism of inhibition of cholinesterases by inorganic mercury (HgCl2) has been studied with a view to using these enzymes as biomarkers or as biological components of biosensors to survey polluted areas. The inhibition of a variety of cholinesterases by HgCl2 was investigated by kinetic studies, X-ray crystallography, and dynamic light scattering. Our results show that when a free sensitive sulfhydryl group is present in the enzyme, as in Torpedo californica acetylcholinesterase, inhibition is irreversible and follows pseudo-first-order kinetics that are completed within 1 h in the micromolar range. When the free sulfhydryl group is not sensitive to mercury (Drosophila melanogaster acetylcholinesterase and human butyrylcholinesterase) or is otherwise absent (Electrophorus electricus acetylcholinesterase), then inhibition occurs in the millimolar range. Inhibition follows a slow binding model, with successive binding of two mercury ions to the enzyme surface. Binding of mercury ions has several consequences: reversible inhibition, enzyme denaturation, and protein aggregation, protecting the enzyme from denaturation. Mercury-induced inactivation of cholinesterases is thus a rather complex process. Our results indicate that among the various cholinesterases that we have studied, only Torpedo californica acetylcholinesterase is suitable for mercury detection using biosensors, and that a careful study of cholinesterase inhibition in a species is a prerequisite before using it as a biomarker to survey mercury in the environment.  相似文献   

8.
Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum.   总被引:12,自引:1,他引:11       下载免费PDF全文
A Chesapeake Bay water isolate of Mycobacterium scrofulaceum containing a 115-megadalton plasmid (pVT1) grew in the presence of 100 microM HgCl2 and converted soluble 203Hg2+ to volatile mercury at a rate of 50 pmol/10(8) cells per min. Cell extracts contained a soluble mercuric reductase whose activity was not dependent on exogenously supplied thiol compounds. The enzyme displayed nearly identical activity when either NADH or NADPH served as the electron donor. A spontaneously cured derivative lacking pVT1 failed to grow in the presence of 100 microM HgCl2 and possessed no detectable mercuric reductase activity.  相似文献   

9.
Preincubation of the oxidized form of the flavoenzyme mercuric reductase with the reducing substrate, NADPH, or with a high concentration of cysteine (30 mM) results in a substantial increase of the catalytic activity as measured in a standard spectrophotometric assay. Also NADH has some activating effect but NADP+ or EDTA have no effect. In the presence of 1 mM cysteine only one equivalent of NADPH per FAD seems to be required for full activation which occurs after an incubation time of about 10 min. Activated mercuric reductase appears to be stable under anaerobic conditions but eventually returns to the original level of activity in the presence of oxygen. The activated state seems to be stabilized by 1 mM cysteine. Activation of mercuric reductase does not seem to be correlated with a change in the number of reactive thiol groups. The chemical nature of the activation process is not yet understood. Stopped-flow studies have shown that the nonactivated enzyme is practically inactive prior to contact with the substrates. The enzyme is gradually activated during the assay. The kinetics of activation of the 'native' enzyme is biphasic but 'clipped' enzyme, lacking an 85-residue N-terminal domain, is activated in a single first-order process. The progress curves obtained with preactivated enzyme are approximately exponential even at saturating concentrations of NADPH (Km = 0.4 microM at 25 degrees C, pH 7.3) and Hg2+ (Km = 3.2 microM in the presence of 1 mM cysteine). The initial rates yield kcat values of about 13 s-1 per FAD molecule (25 degrees C, pH 7.3). We find no evidence for a thiol-dependent change from a rapid to a slow kinetic phase. The shape of the progress curves presumably depends on product inhibition, but NADP+ is not a sufficiently effective inhibitor to explain the effect fully.  相似文献   

10.
The kinetics of thermal inactivation of Penaeus penicillatus acid phosphatase have been studied using a kinetic method related to the substrate reaction during irreversible inhibition of the enzyme activity as previously described by Tsou (Adv. Enzymol. Relat. Areas Mol. Biol. (1988) 61, 381-436). The kinetics of thermal inactivation of the enzyme show that the reaction is irreversible. The microscopic rate constants were determined for thermal inactivation of free enzyme and the enzyme--substrate complex. The results show that the presence of substrate has a significant protective effect against thermal inactivation of the enzyme.  相似文献   

11.
Mercury (Hg) resistance is widespread among microorganisms and is based on the intracellular transformation of Hg(II) to less toxic elemental Hg(0). The use of microbial consortia to demercurize polluted wastewater streams and environments has been demonstrated. To develop efficient and versatile microbial cleanup strategies requires detailed knowledge of transport and reaction rates. This study focuses on the kinetics of the key enzyme of the microbial transformation, e.g., the mercuric reductase (MerA) under conditions closely resembling the cell interior. To this end, previously constructed and characterized Pseudomonas putida strains expressing MerA from Serratia marcescens were applied. Of the P. putida strains considered in this study P. putida KT2442::mer73 constitutively expressing broad spectrum mercury resistance (merTPAB) yielded the highest mercuric reductase (MerA) activity directly after cell disruption. MerA in the raw extract was further purified (about 100 fold). Reduction rates were measured for various substrates (HgCl2, Hg2SO4, Hg(NO3)2 and phenyl mercury acetate) up to high concentrations dependent on the purification grade. In all cases, a pronounced substrate inhibition was found. The kinetic constants determined for the cell raw extract are in agreement with those measured for intact cells. However, the rate data exhibit reduced affinity and inhibition with rising purification grade (specific activity). Therefore, the findings seemingly point to reactions preceding the catalytic reduction. Based on simplified assumptions, a kinetic model is suggested which reasonably describes the experimental findings and can advantageously be applied to the bioreactor design.  相似文献   

12.
Xie XL  Chen QX  Gong M  Wang Q  Shi Y 《The protein journal》2005,24(5):267-273
The effects of guanidinium chloride (GuHCl) on the activity of Penaeus vannamei β-N-acetyl-d-glucosaminidase (NAGase) have been studied. The results show that GuHCl, at appropriate concentrations, can lead to reversible inactivation of the enzyme, and the IC50 is estimated to be 0.6 M. Changes of activity and conformation of the enzyme in different concentrations of GuHCl have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreases distinctly with increasing GuHCl concentrations, and the emission peaks appear red-shifted (from 339.4 to 360 nm). Changes in the conformation and catalytic activity of the enzyme are compared. The extent of inactivation is greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. The kinetics of inactivation has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The value of k+0 is larger than that of k+0 which suggests that the enzyme is protected by substrate to a certain extent during guanidine denaturation.  相似文献   

13.
Inhibition of milk xanthine oxidase by fluorescein bimercuriacetate (FMA) allows for the classification of S-containing groups according to their localization and role in the catalytic activity of the enzyme. The enzyme (E) complexes with FMA (E--FMA I and E--FMA II) differing in their activity, stoichiometry and spectral properties were studied at various experimental conditions, reaction time and FMA concentrations. The enzyme molecule contains 5 groups that are reactive towards FMA (E--FMA I) and are localized outside the active center. That these groups have no concern with activity and are subjected to modification irrespective of whether or not the xanthine oxidase molecule has an intact Mo-center. The formation of an inactive E--FMA II complex is associated with an additional (in comparison with E--FMA I) binding of two FMA molecules per molecule of the active enzyme. The stoichiometry of the E--FMA II complex was determined by the X-ray fluorescent method from the amount of the Hg in enzyme. A kinetic scheme of xanthine oxidase inhibition by FMA is proposed, according to which the inhibition is a result of modification of two groups in the enzyme active center, of which only one is essential for the enzyme activity. This scheme also postulates the role of reversible E--FMA complexes in the course of irreversible inhibition. Xanthine oxidase is protected against FMA by the substrate (xanthine), competitive inhibitors (azaxanthine and allopurinol) and acceptor (2,6-dichlorophenolindophenol), i. e., compounds which interact with the Mo-center of the enzyme. The EPR spectra of the dithionite-reduced E--FMA II complex were found to contain a "slow" signal, Mo(V), typical of the Mo-center devoid of labile sulphur. It was assumed that the essential group interacting with FMA in the active center of xanthine oxidase as a terminal sulphur which is a component of the coordination region of Mo.  相似文献   

14.
Biotoxicity of mercury as influenced by mercury(II) speciation   总被引:2,自引:0,他引:2  
Integration of physicochemical procedures for studying mercury(II) speciation with microbiological procedures for studying the effects of mercury on bacterial growth allows evaluation of ionic factors (e.g., pH and ligand species and concentration) which affect biotoxicity. A Pseudomonas fluorescens strain capable of methylating inorganic Hg(II) was isolated from sediment samples collected at Buffalo Pound Lake in Saskatchewan, Canada. The effect of pH and ligand species on the toxic response (i.e., 50% inhibitory concentration [IC50]) of the P. fluorescens isolated to mercury were determined and related to the aqueous speciation of Hg(II). It was determined that the toxicities of different mercury salts were influenced by the nature of the co-ion. At a given pH level, mercuric acetate and mercuric nitrate yielded essentially the same IC50s; mercuric chloride, on the other hand, always produced lower IC50s. For each Hg salt, toxicity was greatest at pH 6.0 and decreased significantly (P = 0.05) at pH 7.0. Increasing the pH to 8.0 had no effect on the toxicity of mercuric acetate or mercuric nitrate but significantly (P = 0.05) reduced the toxicity of mercuric chloride. The aqueous speciation of Hg(II) in the synthetic growth medium M-IIY (a minimal salts medium amended to contain 0.1% yeast extract and 0.1% glycerol) was calculated by using the computer program GEOCHEM-PC with a modified data base. Results of the speciation calculations indicated that complexes of Hg(II) with histidine [Hg(H-HIS)HIS+ and Hg(H-HIS)2(2+)], chloride (HgCl+, HgCl2(0), HgClOH0, and HgCl3-), phosphate (HgHPO4(0), ammonia (HgNH3(2+), glycine [Hg(GLY)+], alanine [Hg(ALA)+], and hydroxyl ion (HgOH+) were the Hg species primarily responsible for toxicity in the M-IIY medium. The toxicity of mercuric nitrate at pH 8.0 was unaffected by the addition of citrate, enhanced by the addition of chloride, and reduced by the addition of cysteine. In the chloride-amended system, HgCl+, HgCl2(0), and HgClOH0 were the species primarily responsible for observed increases in toxicity. In the cysteine-amended system, formation of Hg(CYS)2(2-) was responsible for detoxification effects that were observed. The formation of Hg-citrate complexes was insignificant and had no effect on Hg toxicity.  相似文献   

15.
Integration of physicochemical procedures for studying mercury(II) speciation with microbiological procedures for studying the effects of mercury on bacterial growth allows evaluation of ionic factors (e.g., pH and ligand species and concentration) which affect biotoxicity. A Pseudomonas fluorescens strain capable of methylating inorganic Hg(II) was isolated from sediment samples collected at Buffalo Pound Lake in Saskatchewan, Canada. The effect of pH and ligand species on the toxic response (i.e., 50% inhibitory concentration [IC50]) of the P. fluorescens isolated to mercury were determined and related to the aqueous speciation of Hg(II). It was determined that the toxicities of different mercury salts were influenced by the nature of the co-ion. At a given pH level, mercuric acetate and mercuric nitrate yielded essentially the same IC50s; mercuric chloride, on the other hand, always produced lower IC50s. For each Hg salt, toxicity was greatest at pH 6.0 and decreased significantly (P = 0.05) at pH 7.0. Increasing the pH to 8.0 had no effect on the toxicity of mercuric acetate or mercuric nitrate but significantly (P = 0.05) reduced the toxicity of mercuric chloride. The aqueous speciation of Hg(II) in the synthetic growth medium M-IIY (a minimal salts medium amended to contain 0.1% yeast extract and 0.1% glycerol) was calculated by using the computer program GEOCHEM-PC with a modified data base. Results of the speciation calculations indicated that complexes of Hg(II) with histidine [Hg(H-HIS)HIS+ and Hg(H-HIS)2(2+)], chloride (HgCl+, HgCl2(0), HgClOH0, and HgCl3-), phosphate (HgHPO4(0), ammonia (HgNH3(2+), glycine [Hg(GLY)+], alanine [Hg(ALA)+], and hydroxyl ion (HgOH+) were the Hg species primarily responsible for toxicity in the M-IIY medium. The toxicity of mercuric nitrate at pH 8.0 was unaffected by the addition of citrate, enhanced by the addition of chloride, and reduced by the addition of cysteine. In the chloride-amended system, HgCl+, HgCl2(0), and HgClOH0 were the species primarily responsible for observed increases in toxicity. In the cysteine-amended system, formation of Hg(CYS)2(2-) was responsible for detoxification effects that were observed. The formation of Hg-citrate complexes was insignificant and had no effect on Hg toxicity.  相似文献   

16.
The kinetics of inhibition of beta-glucosidase from Ampullarium crossean by bromoacetic acid (BrAc) has been studied. The results show that the enzyme can be irreversibly and completely inactivated at high BrAc concentration, while at low BrAc concentration, inhibition of the enzyme is a slow, reversible reaction. The microscopic rate constants for the reactions of BrAc with the enzyme were determined. The presence of the substrate offers obvious protection of the enzyme against inhibition by BrAc. The above results suggest that the histidine residue is essential for activity and is situated at or near the active site of the enzyme.  相似文献   

17.
Kinetic analysis of the glycogen chain growth reaction catalyzed by glycogen phosphorylase b from rabbit skeletal muscle has been carried out over a wide range of AMP concentration under the saturation of the enzyme by glycogen. Applicability of some variants of the kinetic model involving the interaction of AMP- and glucose 1-phosphate-binding sites in the dimeric enzyme molecule is considered. A kinetic model of the enzymatic reaction describing adequately the activation of the enzyme by AMP and inhibition at sufficiently high concentrations of AMP is proposed.  相似文献   

18.
Mercury toxicity mediated by different forms of mercury is a major health problem; however, the molecular mechanisms underlying toxicity remain elusive. We analyzed the effects of mercuric chloride (HgCl(2)) and monomethylmercury (MeHg) on the proteins of the mammalian thioredoxin system, thioredoxin reductase (TrxR) and thioredoxin (Trx), and of the glutaredoxin system, glutathione reductase (GR) and glutaredoxin (Grx). HgCl(2) and MeHg inhibited recombinant rat TrxR with IC(50) values of 7.2 and 19.7 nm, respectively. Fully reduced human Trx1 bound mercury and lost all five free thiols and activity after incubation with HgCl(2) or MeHg, but only HgCl(2) generated dimers. Mass spectra analysis demonstrated binding of 2.5 mol of Hg(2+) and 5 mol of MeHg(+)/mol of Trx1 with the very strong Hg(2+) complexes involving active site and structural disulfides. Inhibition of both TrxR and Trx activity was observed in HeLa and HEK 293 cells treated with HgCl(2) or MeHg. GR was inhibited by HgCl(2) and MeHg in vitro, but no decrease in GR activity was detected in cell extracts treated with mercurials. Human Grx1 showed similar reactivity as Trx1 with both mercurial compounds, with the loss of all free thiols and Grx dimerization in the presence of HgCl(2), but no inhibition of Grx activity was observed in lysates of HeLa cells exposed to mercury. Overall, mercury inhibition was selective toward the thioredoxin system. In particular, the remarkable potency of the mercury compounds to bind to the selenol-thiol in the active site of TrxR should be a major molecular mechanism of mercury toxicity.  相似文献   

19.
The kinetic theory of the substrate reaction during modification of enzyme activity previously described by Tsou [Tsou (1988),Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381–436] has been applied to a study of the kinetics of the course of inactivation of the mitochondrial succinate-ubiquinone reductase by 5,5′-dithiobis-(2-nitro-benzoic acid) (DTNB). The results show that the inactivation of this enzyme by DTNB is a conformation-change-type inhibition which involves a conformational change of the enzyme before inactivation. The microscopic rate constants were determined for the reaction of the inactivator with the enzyme. The presence of the substrate provides marked protection of this enzyme against inactivation by DTNB. The modification reaction of the enzyme using DTNB was shown to follow a triphasic course by following the absorption at 412 nm. Among these reactive thiol groups, the fast-reaction thiol group is essential for the enzyme activity. The results suggest that the essential thiol group is situated at the succinate-binding site of the mitochondrial succinate-ubiquinone reductase.  相似文献   

20.
T Barkay  M Gillman    R R Turner 《Applied microbiology》1997,63(11):4267-4271
Hypotheses that dissolved organic carbon (DOC) and electrochemical charge affect the rate of methylmercury [CH3Hg(I)] synthesis by modulating the availability of ionic mercury [Hg(II)] to bacteria were tested by using a mer-lux bioindicator (O. Selifonova, R. Burlage, and T. Barkay, Appl. Environ. Microbiol. 59:3083-3090, 1993). A decline in Hg(II)-dependent light production was observed in the presence of increasing concentrations of DOC, and this decline was more pronounced at pH 7 than at pH 5, suggesting that DOC is a factor controlling the bioavailability of Hg(II). A thermodynamic model (MINTEQA2) was used to select assay conditions that clearly distinguished among various Hg(II) species. By using this approach, it was shown that negatively charged forms of mercuric chloride (HgCl3-/HgCl(4)2-) induced less light production than the electrochemically neutral form (HgCl2), and no difference was observed between the two neutral forms, HgCl2 and Hg(OH)2. These results suggest that the negative charge of Hg(II) species reduces their availability to bacteria and may be one reason why accumulation of CH3Hg(I) is more often reported to occur in freshwater than in estuarine and marine biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号