首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc levels are high in pancreatic β-cells, and zinc is involved in the synthesis, processing and secretion of insulin in these cells. However, precisely how cellular zinc homeostasis is regulated in pancreatic β-cells is poorly understood. By screening the expression of 14 Slc39a metal importer family member genes, we found that the zinc transporter Slc39a5 is significantly downregulated in pancreatic β-cells in diabetic db/db mice, obese ob/ob mice and high-fat diet-fed mice. Moreover,β-cell-specific Slc39a5 knockout mice have impaired insulin secretion. In addition, Slc39a5-deficient pancreatic islets have reduced glucose tolerance accompanied by reduced expression of Pgc-1α and its downstream target gene Glut2. The down-regulation of Glut2 in Slc39a5-deficient islets was rescued using agonists of Sirt1, Pgc-1α and Ppar-γ. At the mechanistic level, we found that Slc39a5-mediated zinc influx induces Glut2 expression via Sirt1-mediated Pgc-1α activation. These findings suggest that Slc39a5 may serve as a possible therapeutic target for diabetes-related conditions.  相似文献   

2.
Employing subcellular membrane fractionation methods it has been shown that insulin induces a 2-fold increase in the Glut 4 protein content in the plasma membrane of skeletal muscle from rats. Data based upon this technique are, however, impeded by poor plasma membrane recovery and cross-contamination with intracellular membrane vesicles. The present study was undertaken to compare the subcellular fractionation technique with the technique using [3H]ATB-BMPA exofacial photolabelling and immunoprecipitation of Glut 4 on soleus muscles from 3-week-old Wistar rats. Maximal insulin stimulation resulted in a 6-fold increase in 3-O-methylglucose uptake, and studies based on the subcellular fractionation method showed a 2-fold increase in Glut 4 content in the plasma membrane, whereas the exofacial photolabelling demonstrated a 6- to 7-fold rise in cell surface associated Glut 4 protein. Glucose transport activity was positively correlated with cell surface Glut 4 content as estimated by exofacial labelling. In conclusion: (1) the increase in glucose uptake in muscle after insulin exposure is caused by an augmented concentration of Glut 4 protein on the cell surface membrane, (2) at maximal insulin stimulation (20 mU/ml) approximately 40% of the muscle cell content of Glut 4 is at the cell surface, and (3) the exofacial labelling technique is more sensitive than the subcellular fractionation technique in measuring the amount of glucose transporters on muscle cell surface.  相似文献   

3.
Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance.  相似文献   

4.
5.
Fluorescent fructose derivatives for imaging breast cancer cells   总被引:1,自引:0,他引:1  
Breast cancer cells are known to overexpress Glut5, a sugar transporter responsible for the transfer of fructose across the cell membrane. Since Glut5 transporter is not significantly expressed in normal breast cells, fructose uptake can potentially be used to differentiate between normal and cancerous cells. Fructose was labeled with two fluorophores at the C-1 position: 7-nitro-1,2,3-benzadiazole (NBD) and Cy5.5. The labeling site was chosen on the basis of the presence and substrate specificity of the key proteins involved in the first steps of fructose metabolism. Using fluorescence microscopy, the uptake of the probes was studied in three breast cancer cell lines: MCF 7, MDA-MB-435, and MDA-MB-231. Both fluorescent fructose derivatives showed a very good uptake in all tested cell lines. The level of uptake was comparable to that of the corresponding glucose analogs, 2-NBDG and Cy5.5-DG. Significant uptake of 1-NBDF derivative was not observed in cells lacking Glut5 transporter, while the uptake of the 1-Cy5.5-DF derivative was independent of the presence of a fructose-specific transporter. While 1-NBDF showed Glut5-specific accumulation, the coupling of a large fluorophore such as Cy5.5 likely introduces big structural and electronic changes, leading to a fructose derivative that does not accurately describe the uptake of fructose in cells.  相似文献   

6.
Inorganic phosphate (Pi) is fundamental to cellular metabolism and skeletal mineralization. Ingested Pi is absorbed by the small intestine, deposited in bone, and filtered by the kidney where it is reabsorbed and excreted in amounts determined by the specific needs of the organism. Two distinct renal Na-dependent Pi transporters, type IIa (NPT2a, SLC34A1) and type IIc (NPT2c, SLC34A3), are expressed in brush border membrane of proximal tubular cells where the bulk of filtered Pi is reabsorbed. Both are regulated by dietary Pi intake and parathyroid hormone. Regulation is achieved by changes in transporter protein abundance in the brush border membrane and requires the interaction of the transporter with scaffolding and signaling proteins. The demonstration of hypophosphatemia secondary to decreased renal Pi reabsorption in mice homozygous for the disrupted type IIa gene underscores its crucial role in the maintenance of Pi homeostasis. Moreover, the recent identification of mutations in the type IIc gene in patients with hereditary hypophosphatemic rickets with hypercalciuria attests to the importance of this transporter in Pi conservation and subsequent skeletal mineralization. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of inherited and acquired hypophosphatemic skeletal disorders and studies are underway to define their mechanism of action on renal Pi handling in health and disease.  相似文献   

7.
Insulin increases cellular glucose uptake and metabolism in the postprandial state by acutely stimulating the translocation of the Glut4 glucose transporter from intracellular membrane compartments to the cell surface in muscle and fat cells. The intracellular targeting of Glut4 is dictated by specific structural motifs within cytoplasmic domains of the transporter. We demonstrate that two leucine residues at the extreme C-terminus of Glut4 are critical components of a motif (IRM, insulin responsive motif) involved in the sorting of the transporter to insulin responsive vesicles in 3T3L1 adipocytes. Light microscopy, immunogold electron microscopy, subcellular fractionation, and sedimentation analysis indicate that mutations in the IRM cause the aberrant targeting of Glut4 to large dispersed membrane vesicles that are not insulin responsive. Proteomic characterization of rapidly and slowly sedimenting membrane vesicles (RSVs and SSVs) that were highly enriched by immunoadsorption for either wild-type Glut4 or an IRM mutant revealed that the major vesicle fraction containing the mutant transporter (IRM-RSVs) possessed a relatively small and highly distinct protein population that was enriched for proteins associated with stress granules. We suggest that the IRM is critical for an early step in the sorting of Glut4 to insulin-responsive subcellular membrane compartments and that IRM mutants are miss-targeted to relatively large, amorphous membrane vesicles that may be involved in a degradation pathway for miss-targeted or miss-folded proteins or represent a transitional membrane compartment that Glut4 traverses en route to insulin responsive storage compartments.  相似文献   

8.
Employing a monoclonal antibody directed against the C-terminal peptide of glucose transporter molecule 1 (Glut1), we identified a approximately 30-kDa polypeptide which coimmunoprecipitated with Glut1 from sample of human red blood cells (RBC) membranes. The approximately 30-kDa polypeptide reacted with an antibody directed against stomatin, an integral plasma membrane protein which is also present at a high abundance in the human RBC plasma membrane. Likewise, employing anti-stomatin antibody, we found that Glut1 coimmunoprecipitated with stomatin from samples of RBC membranes. However, neither band 3, which is the most abundant integral membrane protein in the RBC, nor actin coimmunoprecipitated with Glut1, indicating a specific interaction between Glut1 and stomatin. Similar to the results obtained in the RBC, Glut1 and stomatin immunoprecipitated with each other in lysates of Clone 9 cells, a rat liver cell line in which Glut1 is expressed at approximately 1/200 the level present in RBC. Employing conditions that resulted in immunoprecipitation of approximately 10% of Glut1 in RBC membranes led to a approximately 3% coimmunoprecipitation of stomatin. A mixed population of Clone 9 cells stably transfected with a plasmid overexpressing the mouse stomatin exhibited 30 +/- 3% reduction in the basal rate of glucose transport compared to control cells or cells stably transfected with the empty vector. The above results suggest that stomatin is closely associated with Glut1 in the plasma membrane and that overexpression of stomatin results in a depression in the basal rate of glucose transport.  相似文献   

9.
Impaired translocation of the glucose transporter isoform 4 (Glut4) to the plasma membrane in fat and skeletal muscle cells may represent a primary defect in the development of type 2 diabetes mellitus. Glut4 is localized in specialized storage vesicles (GSVs), the biological nature and biogenesis of which are not known. Here, we report that GSVs are formed in differentiating 3T3-L1 adipocytes upon induction of sortilin on day 2 of differentiation. Forced expression of Glut4 prior to induction of sortilin leads to rapid degradation of the transporter, whereas overexpression of sortilin increases formation of GSVs and stimulates insulin-regulated glucose uptake. Knockdown of sortilin decreases both formation of GSVs and insulin-regulated glucose uptake. Finally, we have reconstituted functional GSVs in undifferentiated cells by double transfection of Glut4 and sortilin. Thus, sortilin is not only essential, but also sufficient for biogenesis of GSVs and acquisition of insulin responsiveness in adipose cells.  相似文献   

10.
The facilitative glucose transporter from human erythrocyte membrane, Glut1, was purified by a novel method. The nonionic detergent decylmaltoside was selected for solubilization on the basis of its efficiency to extract Glut1 from the erythrocyte membrane and its ability to maintain the protein in a monodisperse state. A positive, anion-exchange chromatography protocol produced a Glut1 preparation of 95% purity with little copurified lipid. This protein preparation exhibited cytochalasin B binding in detergent solution, as measured by tryptophan fluorescence quenching. The transporter existed as a monomer in decylmaltoside, with a Stokes radius of 50 A and a molecular mass of 147 kDa for the protein-detergent complex. We screened detergent, pH, additive, and lipid and have found conditions to maintain Glut1 monodispersity for 8 days at 25 degrees C or over 5 weeks at 4 degrees C. This Glut1 preparation represents the best available material for two- and three-dimensional crystallization trials of the human glucose transporter protein.  相似文献   

11.
Glycerophosphoinositols (GPIs) are water-soluble phosphoinosite metabolites produced by all cell types, whose levels increase in response to a variety of extracellular stimuli, and are particularly high in Ras-transformed cells. GPIs are released to the extracellular space, wherefrom they can be taken up by other cells through a specific transporter. Exogenous GPIs affect a plethora of cellular functions. Among these compounds the most active is GroPIns4P, which affects cAMP levels and PKA-dependent functions through the inhibition of heterotrimeric Gs proteins. GroPIns4P has also recently been found to promote actin cytoskeleton reorganization by inducing Rho and Rac activation through an as yet unidentified mechanism. Here we have assessed the potential effects of GroPIns4P on T-cells. We found that GroPIns4P enhances CXCR4-dependent chemotaxis. This activity results from the capacity of GroPIns4P to activate the Rho GTPase exchange factor, Vav, through an Lck-dependent pathway which also results in activation of the stress kinases JNK and p38. GroPIns4P was also found to activate with a delayed kinetics the Lck-dependent activation of ZAP-70, Shc and Erk1/2. The activities of GroPIns4P were found to be dependent on its capacity to inhibit cAMP production and PKA activation. Collectively, the data provide the first evidence of a role of glycerophosphoinositols as modulators of T-cell signaling and establish a mechanistic basis for the effects of this phosphoinositide derivative on F-actin dynamics.  相似文献   

12.
The glycerophosphoinositols are diffusible phosphoinositide metabolites reported to modulate actin dynamics and tumour cell spreading. In particular, the membrane permeant glycerophosphoinositol 4-phosphate (GroPIns4P) has been shown to act at the level of the small GTPase Rac1, to induce the rapid formation of membrane ruffles. Here, we have investigated the signalling cascade involved in this process, and show that it is initiated by the activation of Src kinase. In NIH3T3 cells, exogenous addition of GroPIns4P induces activation and translocation of Rac1 and its exchange factor TIAM1 to the plasma membrane; in addition, in in-vitro assays, GroPIns4P favours the formation of a protein complex that includes Rac1 and TIAM1. Neither of these processes involves direct actions of GroPIns4P on these proteins. Thus, through the use of specific inhibitors of tyrosine kinases and phospholipase C (and by direct evaluation of kinase activities and inositol 1,4,5-trisphosphate production), we show that GroPIns4P activates Src, and as a consequence, phospholipase Cgamma and Ca(2+)/calmodulin kinase II, the last of which directly phosphorylates TIAM1 and leads to TIAM1/Rac1-dependent ruffle formation.  相似文献   

13.
Insulin stimulates glucose uptake by promoting translocation of the Glut4 glucose transporter from intracellular storage compartments to the plasma membrane. In the absence of insulin, Glut4 is retained intracellularly; the mechanism underlying this process remains uncertain. Using the TC10-interacting protein CIP4 as bait in a yeast two-hybrid screen, we cloned a RasGAP and VPS9 domain-containing protein, Gapex-5/RME-6. The VPS9 domain is a guanine nucleotide exchange factor for Rab31, a Rab5 subfamily GTPase implicated in trans-Golgi network (TGN)-to-endosome trafficking. Overexpression of Rab31 blocks insulin-stimulated Glut4 translocation, whereas knockdown of Rab31 potentiates insulin-stimulated Glut4 translocation and glucose uptake. Gapex-5 is predominantly cytosolic in untreated cells; its overexpression promotes intracellular retention of Glut4 in adipocytes. Insulin recruits the CIP4/Gapex-5 complex to the plasma membrane, thus reducing Rab31 activity and permitting Glut4 vesicles to translocate to the cell surface, where Glut4 docks and fuses to transport glucose into the cell.  相似文献   

14.
The glycerophosphoinositols, phosphoinositide metabolites formed by Ras-dependent activation of phospholipase A2 and a lysophospholipase, have been proposed to be markers of Ras-induced cell transformation. These compounds can have important cellular effects; GroPIns4P is an inhibitor of G protein-stimulated adenylate cyclase and is transiently produced in several cell types after growth factor receptor stimulation of phosphatidylinositol 3-kinase and the small G protein Rac, indicating the importance of defining further its cellular actions and metabolism. We show here that, in postnuclear membranes from Swiss 3T3 cells, there is no high-affinity 'receptor' binding of GroPIns4P. Instead, possibly through the interaction with a transporter, GroPIns4P rapidly equilibrates between medium and cell cytosol, and, at higher concentrations, can concentrate in the cell cytosol. GroPIns4P can be dephosphorylated to GroPIns in vitro by an enzyme that is membrane-associated, Ca2+-dependent, GroPIns4P-selective and has a specific pH profile. Under in vitro phosphorylating conditions, there is production of GroPIns(4,5)P2 and other inositol phosphates. As these in vitro enzyme activities do not fully correlate with the in vivo handling of GroPIns4P, the intracellular GroPIns4P levels may be controlled by its direct physical removal from the cells.  相似文献   

15.
16.
Heterologous complementation of yeast mutants has enabled the isolation of genes encoding several families of amino acid transporters. Among them, NTR1 codes for a membrane protein with weak histidine transport activity. However at the sequence level, NTR1 is related to rather non-specific oligopeptide transporters from a variety of species including Arabidopsis and to the Arabidopsis nitrate transporter CHL1. A yeast mutant deficient in oligopeptide transport was constructed allowing to show that NTR1 functions as a high affinity, low specificity peptide transporter. In siliques NTR1-expression is restricted to the embryo, implicating a role in the nourishment of the developing seed.  相似文献   

17.
The effect of insulin on glucose transport, glucose transporter 4 (Glut4) translocation, and intracellular signaling were measured in fat cells from lean and obese Zucker rats of different ages. Insulin-stimulated glucose transport was markedly reduced in adipocytes from old and obese animals. The protein content of Glut4 and insulin receptor substrates (IRS) 1 and 2 were also reduced while other proteins, including the p85 subunit of PI3-kinase, Shc and the MAP kinases (ERK1 and 2) were essentially unchanged. There was a marked impairment in the insulin stimulated tyrosine phosphorylation of IRS-1 and 2 as well as activation of PI3-kinase and PKB in cells from old and obese animals. Furthermore, insulin-stimulated translocation of both Glut4 and PKB to the plasma membrane was virtually abolished. The phosphotyrosine phosphatase inhibitor, vanadate, increased the insulin- stimulated upstream signaling including PI3-kinase and PKB activities as well as rate of glucose transport. Thus, the insulin resistance in cells from old and obese Zucker rats can be accounted for by an impaired translocation process, due to signaling defects leading to a reduced activation of PI3-kinase and PKB, as well as an attenuated Glut4 protein content.  相似文献   

18.
The glycerophosphodiester phosphodiesterase enzyme family involved in the hydrolysis of glycerophosphodiesters has been characterized in bacteria and recently identified in mammals. Here, we have characterized the activity and function of GDE3, one of the seven mammalian enzymes. GDE3 is up-regulated during osteoblast differentiation and can affect cell morphology. We show that GDE3 is a glycerophosphoinositol (GroPIns) phosphodiesterase that hydrolyzes GroPIns, producing inositol 1-phosphate and glycerol, and thus suggesting specific roles for this enzyme in GroPIns metabolism. Substrate specificity analyses show that wild-type GDE3 selectively hydrolyzes GroPIns over glycerophosphocholine, glycerophosphoethanolamine, and glycerophosphoserine. A single point mutation in the catalytic domain of GDE3 (GDE3R231A) leads to loss of GroPIns enzymatic hydrolysis, identifying an arginine residue crucial for GDE3 activity. After heterologous GDE3 expression in HEK293T cells, phosphodiesterase activity is detected in the extracellular medium, with no effect on the intracellular GroPIns pool. Together with the millimolar concentrations of calcium required for GDE3 activity, this predicts an enzyme topology with an extracellular catalytic domain. Interestingly, GDE3 ectocellular activity is detected in a stable clone from a murine osteoblast cell line, further confirming the activity of GDE3 in a more physiological context. Finally, overexpression of wild-type GDE3 in osteoblasts promotes disassembly of actin stress fibers, decrease in growth rate, and increase in alkaline phosphatase activity and calcium content, indicating a role for GDE3 in induction of differentiation. Thus, we have identified the GDE3 substrate GroPIns as a candidate mediator for osteoblast proliferation, in line with the GroPIns activity observed previously in epithelial cells.The glycerophosphodiester phosphodiesterases (GP-PDEs)5 were initially characterized in bacteria, where they have functional roles for production of metabolic carbon and phosphate sources from glycerophosphodiesters (1, 2) and in adherence to and degradation of mammalian host-cell membranes (3). The GP-PDEs have a catalytic region of 56 amino acids (4). After their characterization in bacteria, mammalian glycerophosphodiesterases were identified, with the definition of a family of seven members (5). The first of these, GDE1, is an interactor of regulator of G-protein signaling (RGS)16, and was subsequently defined as a GP-PDE regulated by G-protein signaling (4). Indeed, GDE1 expression in HEK293T cells showed increased enzymatic activity upon α/β-adrenergic and lysophospholipid receptor stimulation (4). The second member, GDE2, was isolated by homology searches in neuronal tissues and its physiological role involves neuronal differentiation (6, 7). In contrast, GDE3 has been characterized as a marker of osteoblast differentiation and was isolated through a differential display method (8). GDE4 was isolated only recently with three-dimensional modeling defining it as a GP-PDE, although no functional activity has been correlated to its expression (9). The remaining members were cloned following data base searches, with further studies required for the definition of their properties (5). The diversity among these family members, in terms of tissue distribution, subcellular localization, and substrate specificity, suggests they selectively regulate biological functions and have distinct physiological roles (5).The only GP-PDE activity that has been biochemically characterized to date followed GDE1 overexpression in HEK293T cells, which showed a selectivity for the glycerophosphoinositols (GPIs) as substrate (4), in contrast to the bacterial GP-PDEs that show broad substrate specificities with respect to the alcohol moiety of the glycerophosphodiesterases (1, 2). The GPIs are naturally occurring, biologically active metabolites of the phosphoinositides that were originally investigated in the context of Ras-transformed cells (10). They are present in virtually all cell types, where their intracellular levels can also be modulated according to cell activation, differentiation, and development (Refs. 11 and 12 and references therein). Recently, glycerophosphoinositol (GroPIns) was characterized as a mediator of purinergic and adrenergic regulation of PCCl3 thyroid cell proliferation (13), while GroPIns 4-phosphate (GroPIns4P) has been shown to induce reorganization of the actin cytoskeleton in fibroblasts and in T-lymphocytes, by promoting a sustained and robust activation of the Rho GTPases (1416).The GPIs appear to rapidly equilibrate across the plasma membrane when added exogenously to cells, to exert their actions within the cell (12). The plasma membrane transporter for GroPIns characterized in yeast is the protein GIT1 (17), with one of its orthologs in mammalian cells identified as the human permease Glut2 (18). This specific transporter has been proposed to mediate both GroPIns uptake and release, which depends on the GroPIns concentration gradient across the plasma membrane. Under physiological conditions, this gradient can arise from the formation of GPIs from the phosphoinositides inside cells following activation of a specific isoform of phospholipase A2, PLA2IVα (13, 19).The release of the GPIs into the extracellular medium can affect their paracrine targets (16) or initiate their catabolism. This is supported by our characterization of GDE1 activity, and now of GDE3 activity, both of which show a substrate selectivity toward GroPIns, and catalytic activity after heterologous expression that can only be monitored in the extracellular space. Interestingly, GDE3 activity appears to be related to modulation of osteoblast functions, delineating a role for GDE3 in promoting osteoblast differentiation, and mainly regulating osteoblast proliferation.  相似文献   

19.
Phenethyl isothiocyanate (PEITC) is an aromatic isothiocyanate present in cruciferous vegetables. Several studies have shown that isothiocyanates regulate various intracellular signaling pathways, and thereby show anti-inflammatory and detoxifying activities. However, little is known about the effects of PEITC on glucose metabolism. In this study, we examined whether PEITC promotes glucose utilization in mouse skeletal muscle cells, C2C12 myotubes. PEITC induced glucose uptake, glucose transporter 4 (Glut4) translocation to the plasma membrane, and activation of Akt and ERK in C2C12 cells. Inhibition of Akt suppressed PEITC-induced Glut4 translocation and glucose uptake, whereas ERK inhibition did not. Furthermore, PEITC increased phosphorylation of ErbB2 and ErbB3. Treatment with a pan-ErbB inhibitor reduced Akt activation and the subsequent glucose uptake induced by PEITC. These results indicate that PEITC promotes glucose utilization through the ErbB/Akt pathway in C2C12 myotubes. PEITC may therefore serve as a dietary constituent with beneficial effects on the carbohydrate metabolism.

Abbreviations: PEITC: phenethyl isothiocyanate; Glut4: glucose transporter 4; PI3K: phosphatidylinositide 3-kinase; Nrf2: erythroid?2-related factor; ARE: antioxidant response element; HO?1: heme oxygenase?1; NRG: neuregulin  相似文献   


20.
Insulin regulates glucose uptake through effects on the trafficking of the glucose transporter Glut4. To investigate the degree of overlap between Glut4 and the general endocytic pathways, the kinetics of trafficking of Glut4 and the receptors for transferrin (Tf) and α(2)-macroglobulin (α-2-M; LRP-1) were compared using quantitative flow cytometric assays. Insulin increased the exocytic rate constant (k(ex)) for both Glut4 and Tf. However, the k(ex) of Glut4 was 5-15 times slower than Tf in both basal and insulin-stimulated cells. The endocytic rate constant (k(en)) of Glut4 was also five times slower than Tf. Insulin did not affect the k(en) of either protein. In basal cells, the k(en) for α-2-M/LRP-1 was similar to Glut4 but 5-fold slower than Tf. Insulin increased k(en) for α-2-M/LRP-1 by 30%. In contrast, the k(ex) for LRP-1 was five times faster than Glut4 in basal cells, and insulin did not increase this rate constant. Thus, although there is overlap in the protein machineries/compartments utilized, the differences in trafficking kinetics indicate that Glut4, the Tf receptor, and LRP-1 are differentially processed both within the cell and at the plasma membrane. It has been reported that insulin decreases the k(en) of Glut4 in adipocytes. However, the effect of exocytosis on the "internalization" assays was not considered. Because it is counterintuitive, the effect of exocytosis on these assays is often overlooked in endocytosis studies. Using mathematical modeling and simulation, we show that the reported decrease in Glut4 k(en) can be entirely accounted for by the well established increase in Glut4 k(ex).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号