首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cpe(fat/fat) mice are obese, diabetic, and infertile. They have a mutation in carboxypeptidase E (CPE), an enzyme that converts prohormone intermediates to bioactive peptides. The Cpe(fat) mutation leads to rapid degradation of the enzyme. To test whether pro-thyrotropin-releasing hormone (TRH) conversion to TRH involves CPE, processing was examined in the Cpe(fat/fat) mouse. Hypothalamic TRH is depressed by at least 75% compared with wild-type controls. Concentrations of pro-TRH forms are increased in homozygotes. TRH-[Gly(4)-Lys(5)-Arg(6)] and TRH-[Gly(4)-Lys(5)] represent approximately 45% of the total TRH-like immunoreactivity in Cpe(fat/fat) mice; they constitute approximately 1% in controls. Levels of TRH-[Gly(4)] were depressed in homozygotes. Because the hypothalamus contains some TRH, another carboxypeptidase must be responsible for processing. Immunocytochemical studies indicate that TRH neurons contain CPE- and carboxypeptidase D-like immunoreactivity. Recombinant CPE or carboxypeptidase D can convert synthetic TRH-[Gly(4)-Lys(5)] and TRH-[Gly(4)-Lys(5)-Arg(6)] to TRH-[Gly(4)]. When Cpe(fat/fat) mice are exposed to cold, they cannot maintain their body temperatures, and this loss is associated with hypothalamic TRH depletion and reduction in thyroid hormone. These findings demonstrate that the Cpe(fat) mutation can affect not only carboxypeptidase activity but also endoproteolysis. Because Cpe(fat/fat) mice cannot sustain a cold challenge, and because alterations in the hypothalamic-pituitary-thyroid axis can affect metabolism, deficits in pro-TRH processing may contribute to the obese and diabetic phenotype in these mice.  相似文献   

2.
A spontaneous point mutation in the coding region of the carboxypeptidase E (CPE) gene results in a loss of CPE activity that correlates with the development of late onset obesity (Nagert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., Carroll, R. J., Paigen, B. J., and Leiter, E. H. (1995) Nat. Genet. 10, 135-142). Examination of the level of neuropeptides in these mice showed a decrease in mature bioactive peptides as a result of a decrease in both carboxypeptidase and prohormone convertase activities. A defect in CPE is not expected to affect endoproteolytic processing. In this report we have addressed the mechanism of this unexpected finding by directly examining the expression of the major precursor processing endoproteases, prohormone convertases PC1 and PC2 in Cpe(fat) mice. We found that the levels of PC1 and PC2 are differentially altered in a number of brain regions and in the pituitary. Since these enzymes have been implicated in the generation of neuroendocrine peptides (dynorphin A-17, beta-endorphin, and alpha- melanocyte-stimulating hormone) involved in the control of feeding behavior and body weight, we compared the levels of these peptides in Cpe(fat) and wild type animals. We found a marked increase in the level of dynorphin A-17, a decrease in the level of alpha-melanocyte-stimulating hormone, and an alteration in the level of C-terminally processed beta-endorphin. These results suggest that the impairment in the level of these and other peptides involved in body weight regulation is mainly due to an alteration in carboxypeptidase and prohormone convertase activities and that this may lead to the development of obesity in these animals.  相似文献   

3.
Defects in the gene encoding carboxypeptidase E (CPE) in either mouse or human lead to multiple endocrine disorders, including obesity and diabetes. Recent studies on Cpe-/- mice indicated neurological deficits in these animals. As a model system to study the potential role of CPE in neurophysiology, we carried out electroretinography (ERG) and retinal morphological studies on Cpe-/- and Cpe fat/fat mutant mice. Normal retinal morphology was observed by light microscopy in both Cpe-/- and Cpe(fat/fat) mice. However, with increasing age, abnormal retinal function was revealed by ERG. Both Cpe-/- and Cpe fat/fat animals had progressively reduced ERG response sensitivity, decreased b-wave amplitude and delayed implicit time with age, while maintaining a normal a-wave amplitude. Immunohistochemical staining showed specific localization of CPE in photoreceptor synaptic terminals in wild-type (WT) mice, but in both Cpe-/- and Cpe fat/fat mice, CPE was absent in this layer. Bipolar cell morphology and distribution were normal in these mutant mice. Electron microscopy of retinas from Cpe fat/fat mice revealed significantly reduced spherule size, but normal synaptic ribbons and synaptic vesicle density, implicating a reduction in total number of vesicles per synapse in the photoreceptors of these animals. These results suggest that CPE is required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.  相似文献   

4.
The biosynthesis of most neuropeptides and peptide hormones requires a carboxypeptidase such as carboxypeptidase E, which is inactive in Cpe(fat/fat) mice due to a naturally occurring point mutation. To assess the role of carboxypeptidase E in the processing of peptides in the prefrontal cortex, we used a quantitative peptidomics approach to examine the relative levels of peptides in Cpe(fat/fat) versus wild-type mice. Peptides representing internal fragments of prohormones and other secretory pathway proteins were decreased two- to 10-fold in the Cpe(fat/fat) mouse prefrontal cortex compared with wild-type tissue. Degradation fragments of cytosolic proteins showed no major differences between Cpe(fat/fat) and wild-type mice. Based on this observation, a search strategy for neuropeptides was performed by screening for peptides that decreased in the Cpe(fat/fat) mouse. Altogether, 32 peptides were identified, of which seven have not been previously reported. The novel peptides include fragments of VGF, procholecystokinin and prohormone convertase 2. Interestingly, several of the peptides do not fit with the consensus sites for prohormone convertase 1 and 2, raising the possibility that another endopeptidase is involved with their biosynthesis. Taken together, these findings support the proposal that carboxypeptidase E is the major, but not the only, peptide-processing carboxypeptidase and also demonstrate the feasibility of searching for novel peptides based on their decrease in Cpe(fat/fat) mice.  相似文献   

5.
We reported previously that mice obese as a result of leptin deficiency (ob/ob) have enhanced ozone (O3)-induced airway hyperresponsiveness (AHR) and inflammation compared with wild-type (C57BL/6) controls. To determine whether this increased response to O3 was independent of the modality of obesity, we examined O3-induced AHR and inflammation in Cpe(fat) mice. These mice are obese as a consequence of a mutation in the gene encoding carboxypeptidase E (Cpe), an enzyme important in processing prohormones and proneuropeptides involved in satiety and energy expenditure. Airway responsiveness to intravenous methacholine, measured by forced oscillation, was increased in Cpe(fat) vs. wild-type mice after air exposure. In addition, compared with air exposure, airway responsiveness was increased 24 h after O3 exposure (2 ppm for 3 h) in Cpe(fat) but not in wild-type mice. Compared with air-exposed controls, O3 exposure increased bronchoalveolar lavage fluid (BALF) protein, IL-6, KC, MIP-2, MCP-1, and soluble TNF receptors (sTNFR1 and sTNFR2) as well as BALF neutrophils. With the exception of sTNFR1 and sTNFR2, all of these outcome indicators were greater in Cpe(fat) vs. wild-type mice. Serum sTNFR1, sTNFR2, MCP-1, leptin, and blood leukocytes were elevated in Cpe(fat) compared with wild-type mice even in the absence of O3 exposure, similar to the chronic systemic inflammation observed in human obesity. These results indicate that increased O3-induced AHR and inflammation are consistent features of obese mice, regardless of the modality of obesity. These results also suggest that chronic systemic inflammation may enhance airway responses to O3 in obese mice.  相似文献   

6.
7.
The recent finding that Cpe(fat)/Cpe(fat) mice, which lack carboxypeptidase E (CPE) activity because of a point mutation, are still capable of a reduced amount of neuroendocrine peptide processing suggested that additional carboxypeptidases (CPs) participate in this processing reaction. Searches for novel members of the CPE gene family led to the discovery of CPD, CPZ, AEBP1, and CPX-2. In the present report, we describe mouse CPX-1, another novel member of this gene family. Like AEBP1 and CPX-2, CPX-1 contains an N-terminal region of 160 amino acids with sequence similarity to the discoidin domain of a variety of proteins. The 410-residue CP-like domain of CPX-1 has 54% to 62% amino acid sequence identity with AEBP1 and CPX-2 and 33% to 49% amino acid identity with other members of the CPE subfamily. However, several active-site residues that are important for catalytic activity of other CPs are not conserved in CPX-1. Furthermore, CPX-1 expressed in either the baculovirus system or the mouse AtT-20 cell line does not cleave standard CP substrates. Northern blot analysis showed the highest levels of CPX-1 mRNA in testis and spleen and lower levels in salivary gland, brain, heart, lung, and kidney. In situ hybridization of CPX-1 mRNA in embryonic and fetal mouse tissue showed expression throughout the head and thorax, with abundance in primordial cartilage and skeletal structures. In the head, high levels of CPX-1 mRNA were associated with the nasal mesenchyme, primordial cartilage structures in the ear, and the meninges. In the thorax, CPX-1 mRNA was expressed in multiple developing skeletal structures, including chondrocytes and perichondrial cells of the rib, vertebral, and long-bone primordia. Taken together, these findings suggest that it is unlikely that CPX-1 functions in the processing of neuroendocrine peptides. Instead, CPX-1 may have a role in development, possibly mediating cell interactions via its discoidin domain.  相似文献   

8.
The relationship between obesity and cholesterol cholelithiasis is not well understood at physiologic or genetic levels. To clarify whether obesity per se leads to increased prevalence of cholelithiasis, we examined cholesterol gallstone susceptibility in three polygenic (KK/H1J, NON/LtJ, NOD/LtJ) and five monogenic [carboxypeptidase E (Cpe (fat)), agouti yellow (A(y)), tubby (tub), leptin (Lep(ob)), leptin receptor (Lepr (db))] murine models of obesity during ingestion of a lithogenic diet containing dairy fat, cholesterol, and cholic acid. At 8 weeks on the diet, one strain of polygenic obese mice was resistant whereas the others revealed low or intermediate prevalence rates of cholelithiasis. Monogenic obese mice showed distinct patterns with either high or low gallstone prevalence rates depending upon the mutation. Dysfunction of the leptin axis, as evidenced by the Lep(ob) and the Lepr (db) mutations, markedly reduced gallstone formation in a genetically susceptible background strain, indicating that in mice with this genetic background, physiologic leptin homeostasis is a requisite for cholesterol cholelithogenesis. In contrast, the Cpe (fat) mutation enhanced the prevalence of cholelithiasis markedly when compared with the background strain. Since CPE converts many prohormones to hormones, a deficiency of biologically active cholecystokinin is a likely contributor to enhanced susceptibility to cholelithiasis through compromising gallbladder contractility and small intestinal motility. Because some murine models of obesity increased, whereas others decreased cholesterol gallstone susceptibility, we establish that cholesterol cholelithiasis in mice is not simply a secondary consequence of obesity per se. Rather, specific genes and distinct pathophysiological pathways are responsible for the shared susceptibility to both of these common diseases.  相似文献   

9.
ProSAAS is a newly discovered protein with a neuroendocrine distribution generally similar to that of prohormone convertase 1 (PC1), a peptide-processing endopeptidase. Several proSAAS-derived peptides were previously identified in the brain and pituitary of the Cpe(fat)/Cpe(fat) mouse based on the accumulation of C-terminally extended peptides due to the absence of enzymatically active carboxypeptidase E, a peptide-processing exopeptidase. In the present study, antisera against different regions of proSAAS were used to develop radioimmunoassays and examine the processing profile of proSAAS in wild type and Cpe(fat)/Cpe(fat) mouse tissues following gel filtration and reverse phase high performance liquid chromatography. In wild type mouse brain and pituitary, the majority of proSAAS is processed into smaller peptides. These proSAAS-derived peptides elute from the reverse-phase column in the same positions as synthetic peptides that correspond to little SAAS, PEN, and big LEN. Mass spectrometry revealed the presence of peptides with the expected molecular masses of little SAAS and big LEN in the fractions containing immunoreactive peptides. The processing of proSAAS is slightly impaired in Cpe(fat)/Cpe(fat) mice, relative to wild-type mice, leading to the accumulation of partially processed peptides. One of these peptides, the C-terminally extended form of PEN, is known to inhibit PC1 activity and this could account for the reduction in enzymatically active PC1 seen in Cpe(fat)/Cpe(fat) mice. The observation that little SAAS and big LEN are the major forms of these peptides produced in mouse brain and pituitary raises the possibility that these peptides function as neurotransmitters or hormones.  相似文献   

10.
Carboxypeptidase E is a major enzyme in the biosynthesis of numerous neuroendocrine peptides. Previously, we developed a technique for the isolation of neuropeptide-processing intermediates from mice that lack carboxypeptidase E activity (Cpe fat/fat mice) due to a naturally occurring point mutation. In the present study, we used a differential labeling procedure with stable isotopic tags and mass spectrometry to quantitate the relative changes in a number of hypothalamic peptides in Cpe fat/fat mice in two different paradigms that each cause an approximately 10% decrease in body mass. One paradigm involved a 2-day fast under normal sedentary conditions (i.e. standard mouse cages); the other involved giving mice access to an exercise wheel for 4 weeks with free access to food. Approximately 50 peptides were detected in both studies, and over 80 peptides were detected in at least one of the two studies. Twenty-eight peptides were increased >50% by food deprivation, and some of these were increased by 2- to 3-fold. In contrast, only three peptides were increased >50% in the group with exercise wheels, and many peptides showed a slight 15-30% decrease upon exercise. Approximately one-half of the peptides detected in both studies were identified by tandem mass spectrometry. Peptides found to be elevated by food deprivation but not exercise included a number of fragments of proenkephalin, prothyrotropin-releasing hormone, secretogranin II, chromogranin B, and pro-SAAS. Taken together, the differential regulation of these peptides in the two paradigms suggests that the regulation is not due to the lower body weight but to the manner in which the paradigms achieved this lower body weight.  相似文献   

11.
Quantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to WT mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in WT mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C‐terminal Lys and/or Arg were generally not detectable in WT mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides.  相似文献   

12.
Expression of carboxypeptidase E (CPE), a prohormone processing enzyme in different cancer types, was analyzed from data in the GEO profile database () and experimentally in pheochromocytomas. Analysis of microarray data demonstrated that significantly elevated levels of CPE mRNA was found in many metastatic non-endocrine cancers: cervical, colon rectal, renal cancers, Ewing sarcomas (bone cancer), and various types of astrocytomas and oligodendrogliomas, whereas expression of CPE mRNA was virtually absent in their respective counterpart normal tissues. Moreover, there was higher CPE mRNA expression in cells from the metastatic tumor compared to those from the primary tumor in colorectal cancer. Elevated CPE mRNA expression was found in neuroendocrine tumors in lung and pituitary adenomas, although the significance is unclear since endocrine and neuroendocrine cells normally express CPE. However, studies of neuroendocrine tumors, pheochromocytomas, revealed expression of not only wild-type CPE, but a variant which was correlated with tumor behavior. Extremely high CPE mRNA copy numbers of the variant were found in very large or invasive tumors, both of which usually indicate poor prognosis. Thus, collectively the data suggest that CPE may play a role in promoting tumor growth and invasion. CPE could potentially serve as a diagnostic and prognostic biomarker for metastasis in different cancer types.  相似文献   

13.
Cultured astrocytes have recently been shown to produce certain neuropeptides, as well as neuropeptide processing enzymes. To characterize the secretory pathway in cultured astrocytes, we used the neuropeptide processing enzyme carboxypeptidase E (CPE) as a marker for neuropeptide secretion. Cultured astrocytes and AtT-20 cells, a mouse pituitary-derived neuroendocrine cell line, were labeled with [35S]Met for 15 min and then chased with unlabeled Met. CPE was isolated from either medium or cell extracts using a substrate affinity column. The time course of secretion of radiolabeled CPE was significantly different for cultured astrocytes as compared with AtT-20 cells. CPE was rapidly secreted from the astrocytes after a 30-min lag time, presumably reflecting transport through the endoplasmic reticulum and Golgi apparatus, followed by constitutive secretion. The secretion of radiolabeled CPE was essentially complete by 2 h. In contrast, only a portion of the radiolabeled CPE was secreted from AtT-20 cells over a 2-3-h period, indicating that the majority of newly synthesized CPE is stored, presumably in secretory granules within the AtT-20 cells. The regulation of CPE secretion from astrocytes was also examined. CPE secretion is stimulated two- to threefold by prolonged treatment (3-48 h) with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) but not by treatment with other secretagogues that stimulate CPE secretion from AtT-20 cells (forskolin, isoproterenol, A23187, and vasoactive intestinal peptide) or short (less than 3 h) exposure to TPA. Taken together, these results indicate that the secretory pathway for CPE, and presumably neuropeptides, is substantially different in astrocytes than the secretory pathway for CPE in neuroendocrine cells.  相似文献   

14.
Abstract: The ocular ciliary epithelium, the site of aqueous humor secretion in the mammalian eye, is believed to play a key function in signaling mechanisms that regulate the rate of secretion, and thus intraocular pressure. One possible way of mediating these signaling functions is through neuropeptides and hormones secreted into the aqueous humor and acting on target tissues. We recently identified a cDNA clone sharing 100% identity with carboxypeptidase E (CPE), a neuropeptide-processing enzyme. Utilizing polymerase chain reaction, we further identified and characterized another processing enzyme, the peptidylglycine α-amidating monooxygenase (PAM), and the neuropeptide secretogranin II, a molecular marker restricted to neuroendocrine tissues. Using specific probes, we found that the nonpigmented ciliary epithelial cells express CPE, PAM, and secretogranin II mRNA, and protein. We also found that CPE and secretogranin II are abundant in aqueous humor. Treatment of cultured ciliary epithelial cells with veratridine and phorbol ester up-regulates CPE and PAM. Secretogranin II was found to be induced by veratridine, whereas phorbol ester had little effect, suggesting different mechanisms for secretion. The results demonstrate that secretogranin II, CPE, and PAM represent a specialized group of neuropeptide and neuropeptide-processing enzymes secreted by the ciliary epithelial cells which may confer to them neuroendocrine functions in cell-cell communication or cell signaling.  相似文献   

15.
Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.  相似文献   

16.
Carboxypeptidases may play important role(s) in prohormone processing in normal and neoplastic adenohypophyseal cells of the pituitary. We have recently demonstrated carboxypeptidase E (CPE) and carboxypeptidase Z (CPZ) in the majority of adenohypophyseal cells with carboxypeptidase D (CPD) immunoreactivity largely confined to adrenocorticotrophs. This study evaluated the expression patterns of CPE, CPD, and CPZ immunoreactivity in 48 pituitary adenomas. Our immunohistochemistry demonstrated extensive intracytoplasmic immunoreactivity for CPE, CPD, and CPZ in adrenocorticotrophic hormone (ACTH)-producing adrenocorticotroph cells, prolactin-producing lactotroph cells, and growth hormone (GH)-producing somatotroph cell adenomas, all of which require carboxypeptide processing of prohormones to produce active endocrine hormones. In contrast to the restricted expression in the normal adenohypophysis, CPD appeared to be widespread in the majority of adenomas, suggesting that CPD levels are increased in adenomas. In luteinizing hormone/follicle-stimulating hormone (LH/FSH)-producing gonadotroph adenomas, which do not require carboxypeptidases to produce gonadotropins, only CPZ immunostaining was demonstrated. In null-cell adenomas, CPE immunoreactivity was detected in the majority of tumors, but CPD and CPZ were identified only in a minority of cases. CPE in these cells may process other peptides critical for pituitary cell function, such as chromogranin A or B. These findings suggest that CPs participate in the functioning of pituitary adenomas.  相似文献   

17.
Phogrin, a receptor tyrosine phosphatase-like protein, is localized to dense-core secretory granules (SGs) in various neuroendocrine cells. A previous report showed that the N-terminal luminal domain mediates targeting of this protein to SGs in AtT-20 cells. Here, we show that the luminal domain specifically interacts with carboxypeptidase E (CPE), one of the key proteins involved in peptide hormone sorting, in a weakly acidic condition. The luminal domain consists of pro-sequence domain (pro) and subsequent N-side mature domain and the pro domain was preferentially required for phogrin interaction with CPE and for its targeting to SGs. Small interfering RNA-directed reduction of the CPE protein level resulted in an improper accumulation of phogrin at the trans-Golgi network in AtT-20 cells. This finding indicates that CPE is involved in the sorting process of phogrin to SGs. However, SG localization of CPE was hindered by overexpression of the phogrin mutants that lack the transport motif of binding to clathrin adaptor complexes. Phogrin-depleted AtT-20 cells also exhibited reduced CPE targeting and increased CPE degradation. Our results suggest that the luminal interaction between phogrin and CPE contributes to their targeting to SGs in a cooperative manner in neuroendocrine cells.  相似文献   

18.
ProSAAS is the precursor of a number of peptides that have been proposed to function as neuropeptides. Because proSAAS mRNA is highly expressed in the arcuate nucleus of the hypothalamus, we examined the cellular localization of several proSAAS-derived peptides in the mouse hypothalamus and found that they generally colocalized with neuropeptide Y (NPY), but not α-melanocyte stimulating hormone. However, unlike proNPY mRNA, which is upregulated by food deprivation in the mediobasal hypothalamus, neither proSAAS mRNA nor proSAAS-derived peptides were significantly altered by 1-2 days of food deprivation in wild-type mice. Furthermore, while proSAAS mRNA levels in the mediobasal hypothalamus were significantly lower in Cpe(fat/fat) mice as compared to wild-type littermates, proNPY mRNA levels in the mediobasal hypothalamus and in other subregions of the hypothalamus were not significantly different between wild-type and Cpe(fat/fat) mice. Intracerebroventricular injections of antibodies to two proSAAS-derived peptides (big LEN and PEN) significantly reduced food intake in fasted mice, while injections of antibodies to two other proSAAS-derived peptides (little LEN and little SAAS) did not. Whole-cell patch clamp recordings of parvocellular neurons in the hypothalamic paraventricular nucleus, a target of arcuate NPY projections, showed that big LEN produced a rapid and reversible inhibition of synaptic glutamate release that was spike independent and abolished by blocking postsynaptic G protein activity, suggesting the involvement of a postsynaptic G protein-coupled receptor and the release of a retrograde synaptic messenger. Taken together with previous studies, these findings support a role for proSAAS-derived peptides such as big LEN as neuropeptides regulating food intake.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号