首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In Exp. I, blood samples were collected simultaneously from the posterior vena cava and jugular vein or aorta from 7 heifers every 5-20 min for 2-5 h. Concomitant pulsatile secretion of oxytocin and immunoreactive neurophysin I was detected in the vena cava, but not in the jugular vein or aorta. Concentrations of oxytocin and immunoreactive neurophysin increased earlier and were higher in the vena cava than in the jugular vein or aorta after the injection of a luteolytic dose of prostaglandin F-2 alpha analogue during the mid-luteal phase of the oestrous cycle, demonstrating its ovarian but not pituitary origin. In Exp. II, blood samples were collected from the jugular vein every 12 h during 1 week after oestrus. Follicular growth had been stimulated during the preceding oestrous cycle with PMSG (10 heifers and cows) or with FSH (5 animals); 6 heifers served as controls. There was a high correlation between the number of follicles or CL and the increase in oxytocin and immunoreactive neurophysin I. Although PMSG had a greater luteotrophic effect than did FSH on progesterone secretion, a similar stimulation of oxytocin and immunoreactive neurophysin I was not observed. It is concluded that immunoreactive neurophysin I and oxytocin are secreted from the ovary in concentrations dependent upon the number of corpora lutea (and of follicles) present. During the mid-luteal period the secretion occurs in a concomitant pulsatile fashion.  相似文献   

2.
Specific, homologous porcine neurophysin I and II radioimmunoassays were established together with specific oxytocin and vasopressin radioimmunoassays. The levels of each of these proteins and peptides were measured in acid extracts of individual paraventricular nuclei, supraoptic nuclei, neurohypophyseal stalks and posterior pituitary lobes of 12 pigs in order to quantitate the neurophysin-hormone relationships in the porcine neurohypophyseal system. Neurophysin III was found to be immunologically identical to neurophysin I. Neurophysin measurements by radioimmunoassay were quantitatively validated by scanning densitometry of polyacrylamide gels stained with 0.5% amido schwarz. In the hypothalamic nuclei vasopressin was in 3–4 M excess of oxytocin but in the neurohypophyseal stalk and posterior pituitary lobe the hormones were equimolar suggesting that the rate of formation of vasopressin differs from that of oxytocin. Neurophysin I immunoreactivity was present in a 3:1 molar ratio with neurophysin II throughout the porcine neurohypophyseal system. In posterior pituitary lobes total neurophysins were equimolar to total hormone concentrations. The specific activity (pmol/mg extracted protein) of oxytocin increased 1800 times, vasopressin 560 times and neurophysins about 360 times from the paraventricular nucleus to the posterior pituitary lobe. In the hypothalamic nuclei relationships between immunoreactive neurophysin I and vasopressin, and between neurophysin II and oxytocin were highly significant. In the posterior pituitary lobe each immunoreactive neurophysin level correlated with both hormone levels. Quantification of densitometric scans of stained polyacrylamide gels from neurophypophyseal extracts and immunoreactivity patterns of neurophysins in eluates of sliced, duplicate gels indicated that neurophysin III decreased distally within the neurohypophyseal tract while neurophysin I increased. The results demonstrated that vasopressin was associated with porcine neurophysin I. However, oxytocin may be associated with both immunoreactive neurophysin I and neurophysin II in the porcine neurohypophyseal system if a 1:1 molar ratio of neurophysin to hormone is to be maintained. Neurophysin III contributed to the stoichiometry of this relationship.  相似文献   

3.
Summary The presence of oxytocin, vasopressin and neurophysin in the testis of adult Wistar and Brattleboro rats has been examined immunocytochemically. After fixation in modified Bouin's solution, or Bouin's sublimate fixative, immunostaining was accomplished with the peroxidase-antiperoxidase method. The presence of immunoreactive oxytocin was demonstrated in 80% of the interstitial cell population of both rat strains while no staining was observed for vasopressin or neurophysin.  相似文献   

4.
The cellular distribution of neurophysin and oxytocin within ovine corpora lutea obtained on Days 4, 10 and 16 of the estrous cycle was examined immunocytochemically. Serial sections (8-10 micron-thick) prepared from corpora lutea that had been fixed in Bouin's solution and embedded in paraffin were immunostained for neurophysin or oxytocin using the peroxidase-antiperoxidase (PAP) procedure. Irrespective of the day of the cycle examined, immunoreactivity was restricted to large luteal cells. However, on Days 4 and 10 of the cycle, the intensity of staining in large luteal cells was highly variable; and, within the same section some cells were heavily stained, others were only lightly stained, and still others were not stained at all. In contrast, on Day 16 of the cycle, the intensity of staining was uniform and essentially all of the large luteal cells were immunoreactive. Based on the results obtained, it is evident that immunoreactive neurophysin and oxytocin can be detected as early as Day 4 of the cycle, persists through Day 15, and is restricted to large luteal cells.  相似文献   

5.
Summary With the use of immunocytochemistry, it was shown that both the supraoptic and paraventricular hypothalamic nuclei in humans contain at least two different neurophysins. These two human neurophysins are immunologically related to bovine neurophysin I and neurophysin II, respectively. One human neurophysin is associated with vasopressin, the other with oxytocin. Human vasopressin-neurophysin and oxytocin-neurophysin are located separately in two different types of neurons, which correspond respectively to the vasopressinergic and oxytocinergic neurons of both the supraoptic and paraventricular nuclei. The neurophysin of the human vasopressinergic suprachiasmatic neurons appears to be closely related to or identical with neurophysin of the vasopressinergic neurons of the human magnocellular hypothalamic nuclei.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

6.
Summary The location, cytology and projections of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig were investigated using specific antisera against vasopressin, oxytocin or neurophysin in the unlabeled antibody enzyme immunoperoxidase method. Light microscopic examination of the neurons of the supraoptic and paraventricular nuclei shows that hormone is transported not only in axons, but also in processes having the characteristics of dendrites. Neurons were found to contain only vasopressin or oxytocin; all neurons containing neurophysin appear to contain either vasopressin or oxytocin. In the neural lobe, vasopressin and oxytocin terminals are intermingled. In the median eminence, vasopressin and oxytocin fibers are intermingled in the internal zone. In a caudal portion of the median eminence, a number of vasopressin and neurophysin (but few oxytocin) axons enter the external zone from the internal zone, and surround portal capillaries. In the supraoptic nucleus, vasopressin neurons outnumber oxytocin neurons with a ratio of at least 5:1. The paraventricular nucleus is separated into two distinct groups of neurons, a lateral group consisting of only vasopressin neurons, and a medial group consisting of only oxytocin neurons. In addition to axons passing to the neurohypophysis, a number of axons appear to interconnect the supraoptic and paraventricular nuclei.Supported by the Deutsche Forschungsgemeinschaft (SFB 51, C/21 and C/27), (We 608/3)Acknowledgements. The authors are greatly indebted to Mmes. R. Köpp-Eckmann, B. Reijerman, A. Scheiber, I. Wild and Mr. U. Schrell for technical assistance, to Mmes. P. Campbell and U. Wolf for editorial assistance, and to Dr. R.R. Dries and Ferring Pharmaceuticals, Kiel, for the generous provision of high quality peptides  相似文献   

7.
Corpora lutea, corpora albicantia, and ovarian stroma from normal human premenopausal ovaries were examined for the presence of oxytocin and neurophysin by using highly specific antisera and peroxidase-antiperoxidase light-microscopic immunohistochemistry. Oxytocin and neurophysin immunoreactivity was found in some but not all cells of the corpora lutea obtained on days 19 to 24 of the menstrual cycle. Stromal tissue and corpora albicantia did not give a positive reaction for either of these peptides, and negative results were also obtained with corpora lutea of mid- and term-pregnancy and preovulatory follicles. Specificity of the immunohistochemical reaction was confirmed by immunoabsorption tests. The specific localization of immunoreactive oxytocin and neurophysin in corpora lutea of the human menstrual cycle directly demonstrates the presence of oxytocin- and neurophysin-positive cells within the human corpus luteum.  相似文献   

8.
Summary The presence of neurophysin, oxytocin and vasopressin in the bovine corpus luteum was examined immunocytochemically. Tissue blocks of corpora lutea from pregnant and non-pregnant animals were fixed with glutaraldehyde/paraformaldehyde fixative and immunostained by the peroxidase-antiperoxidase (PAP) method. The simultaneous presence of immunoreactive oxytocin and immunoreactive oxytocin-neurophysin was demonstrated in large luteal cells of non-pregnant animals, while no staining for vasopressin or vasopressin-neurophysin was observed. None of the peptides were detected in the corpus luteum of pregnant animals. The small luteal cells were not found to be stainable at any time.  相似文献   

9.
Summary Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

10.
Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

11.
Annetocin is a structurally and functionally oxytocin-related peptide isolated from the earthworm Eisenia foetida. We present the characterization of the annetocin cDNA. Sequence analyses of the deduced precursor polypeptide revealed that the annetocin precursor is composed of three segments: a signal peptide, an annetocin sequence flanked by a Gly C-terminal amidation signal and a Lys-Arg dibasic processing site, and a neurophysin domain, similar to other oxytocin family precursors. The proannetocin showed 37.4-45.8% amino acid homology to other prohormones. In the neurophysin domain, 14 cysteines and amino acid residues essential for association of a neurophysin with a vasopressin/oxytocin superfamily peptide were conserved, suggesting that the Eisenia neurophysin can bind to annetocin. Furthermore, in situ hybridization experiments demonstrated that the annetocin gene is expressed exclusively in neurons of the central nervous system predicted to be involved in regulation of reproductive behavior. These findings confirm that annetocin is a member of the vasopressin/oxytocin superfamily. This is the first identification of the cDNA encoding the precursor of an invertebrate oxytocin-related peptide and also the first report of the identification of an annelid vasopressin/oxytocin-related precursor.  相似文献   

12.
Using an aqueous extraction followed by ultrafiltration through Amicon Diaflo membranes, two ovine pineal fractions were obtained, which contain immunoreactive neurophysin. The presence of neurophysin was monitored by radioimmunoassay, employing an antiserum raised against pituitary bovine neurophysin and selected because it reacts with neurophysins of many other mammals. From 50 g of wet ovine pineal glands 552 micrograms of immunoreactive neurophysins were obtained. About 5% of these immunoreactive neurophysins are eluted from three different Sephadex columns with an elution volume corresponding to Mr above 10,000 between bovine serum albumin and pituitary neurophysin. The remaining 95% of ovine immunoreactive pineal neurophysin (Mr 10,000) shares immunological and physico-chemical properties with highly purified bovine pituitary neurophysin used as a reference. From the results of gel filtration and affinity chromatography on LVP-Sepharose it was concluded that ovine pineal gland may contain a neurophysin precursor molecule in addition to the neurophysin Mr 10,000.  相似文献   

13.
Neurophysin-M, a methionine-containing protein that is the major constituent of neurophysin, has been crystallized as complexes with [8-arginine]-vasopressin. Three moles of vasopressin alone or 2 moles of vasopressin together with 1 mole of oxytocin are bound/mole of protein. An amorphous complex of the protein with oxytocin alone contains 2 moles of the hormone/mole of protein. Deamino-[8-arginine]-vasopressin, a highly active basic analogue of vasopressin, is not bound by neurophysin. The primary amino group of both vasopressin and oxytocin is necessary for binding with neurophysin.  相似文献   

14.
The influence of adrenalectomy and administration of hypertonic saline on the amount of vasopressin, oxytocin, and neurophysin contained in the median eminence and the neural lobe of rats was studied by means of the following methods: (i) morphometric and microphotometric analyses of aldehyde fuchsin-stained histological sections of the neurohypophysis; (ii) immunohistochemical demonstration of vasopressin, oxytocin, and neurophysin in the neurohypophysis, and (iii) radioimmunological measurement of vasopressin and oxytocin in extracts of the median eminence and the neural lobe. Adrenalectomy increases the amount of vasopressin and neurophysin in the external layer of the median eminence but does not change the content of oxytocin. It has no influence on the amount of vasopressin, oxytocin, and neurophysin demonstrable in the inner layer of the median eminence and in the neural lobe two weeks after the operation. Hypertonic saline markedly diminishes the vasopressin, oxytocin, and neurophysin content of the inner layer of the median eminence and the neural lobe but reduces only slightly, if at all, the amount of vasopressin and neurophysin in the outer layer of the median eminence. The findings support the concept that osmotic stress reduces only the vasopressin and oxytocin content of the hypothalamus-neural lobe system and has no or only little influence on the vasopressin content of the outer layer of the median eminence.  相似文献   

15.
Human intestinal trefoil factor hITF, a polypeptide of the P-domain family, was found to occur in hypothalamic neurons. With combined immunofluorescence and immunoperoxidase technique we investigated the coexistence of hITF with the neurohypophysial peptide oxytocin and the associated neurophysin I in sections of the human hypothalamus. In the supraoptic nucleus, 39.2% of magnocellular oxytocinergic perikarya show hITF immunoreactivity. A similar distribution was observed in perivascular hypothalamic oxytocinergic neurons, whereas in the paraventricular nucleus, 99% of the oxytocinergic neurons show hITF coexpression. In the periventricular nucleus (PEV), single, scattered neurons with both immunoreactivities occur. Our findings indicate that hITF and oxytocin are coexpressed in a portion of the magnocellular neurons in the human hypothalamus, and that hITF is among the neurohypophysial peptides.  相似文献   

16.
Complex formation between bovine neurophysin II and oxytocin molecules containing 85% 13C enrichment in specific amino acid residues was studied using 13C nuclear magnetic resonance spectroscopy. Chemical shift and relaxation time values of the analogue [13C-Leu3]oxytocin, [13C-Gly9]oxytocin, and the doubly labeled [13C-Ile3 Gly9]oxytocin were obtained for the hormones in the absence and presence of neurophysin. The results showed that certain 13C nuclear magnetic resonance parameters of residue 3 but not of residue 9 of oxytocin are altered upon binding to neurophysin. These observations suggest that residue 3 but not residue 9 is involved in the protein-hormone interaction and they demonstrate the general applicability of selective 13C enrichment for the study of peptide-protein interactions.  相似文献   

17.
C Iwai  H Ochiai  Y Nakai 《Acta anatomica》1989,136(4):279-284
The neuropeptide Y (NPY) immunoreactive synaptic input to neurons containing neurophysin II (NP II), the carrier protein of vasopressin (VP), was observed in the paraventricular nucleus (PVN) of the rat hypothalamus by double-labeling immunocytochemistry combining the preembedding peroxidase-antiperoxidase (PAP) method with the postembedding immunogold staining method at the electron-microscopic level. NPY-like immunoreactivities were detected by the PAP method in the dense granular vesicles (70-100 nm in diameter) in the immunoreactive presynaptic axon terminals. NP II-like immunoreactive large neurosecretory granules labeled with gold particles were found in the neurons receiving synaptic input of the NPY-like immunoreactive terminals. This suggests that NPY may be a neurotransmitter or neuromodulator and that NPY neurons may, through synaptic contacts, regulate the secretion of VP neurons.  相似文献   

18.
The methyl-acceptor activities of bovine neurophysins I and II for the enzyme protein carboxymethylase (EC 2.1.1.24) were found to be similar and as high as for other previously identified, biologically active protein substrates. Effects on the rate of methylation of these neurophysins were investigated with the posterior pituitary hormone ligands, oxytocin and vasopressin, and the hormone-related tripeptide ligand, methionyl-tyrosyl-phenylalaninamide. An increase in the rate of neurophysin II methylation was observed with both oxytocin and tripeptide. This ligand-induced response did not occur with either native neurophysin I or disulfide-scrambled neurophysin II.  相似文献   

19.
1. Hypothalamic magnocellular neurons synthesize, store, and secrete large quantities of the neuropeptides, vasopressin (VP) and oxytocin (OT), which are synthesized as protein precursors also containing proteins called neurophysins. These protein precursors are sorted through the regulated secretory pathway (RSP), packaged into large dense core vesicles LDCVs, and their peptide products are secreted from nerve terminals in the posterior pituitary.2. It has been hypothesized that this efficient packaging is dependent on the interaction of the peptide with neurophysin in a complex that forms the granule core. To test this, PC12 cells were transfected with vasopressin precursor DNA constructs that either contained or deleted the neurophysin moiety and tagged with enhanced green fluorescent protein (EGFP) as reporters. The intracellular routing and secretion of the EGFP-tagged VP precursor proteins were studied by in differentiated PC12 cells by fluorescence microscopy, electron microscopic immunocytochemistry, and fluorescent imaging techniques.3. The data showed that only when the neurophysin was present in the VP precursor construct did the fluorescent fusion protein become routed to the RSP and get efficiently packaged into LDCVs and secreted. These data are consistent with the view that routing of the precursor to LDCVs requires the amino acids that encode the intravesicular chaperone, neurophysin.  相似文献   

20.
We examined the extent to which rates of enzymatic conversion of the oxytocin biosynthetic precursor to mature peptide are modulated by intramolecular and intermolecular assembly of precursor and polypeptide intermediates. The biosynthesized precursor contains hormone and neurophysin sequences linked by a Gly-Lys-Arg sequence and undergoes enzymatic processing reactions which include endoproteolytic cleavage at the Lys-Arg dibasic sequence, carboxypeptidase B-like exoproteolytic cleavage, and enzymatic amidation. We evaluated the effect of neurophysin on such processing reactions using semisynthetic precursors of oxytocin/bovine neurophysin I and synthetic oxytocinyl precursor intermediates as substrates. Neurophysin I at high concentration (0.7 mM) reduced the rates of carboxy-peptidase B-like conversion of oxytocinyl-Gly-Lys-Arg to oxytocinyl-Gly and the enzymatic amidation of oxytocinyl-Gly to mature (C-terminal amidated) oxytocin. The dependence of rate suppression on the concentrations of peptide substrate and neurophysin I suggested that suppression is due to intermolecular formation of hormone-neurophysin complexes which are aggregated at least to dimers. An analogous intramolecular neurophysin effect was found for endoproteolytic processing of semisynthetic precursors. Endoproteinase Lys-C cleaved the Lys11-Arg12 peptide bond in a native-like semisynthetic precursor at a significantly slower rate than it did an assembly-deficient precursor analogue. The difference in semisynthetic precursor endoproteolysis rates is most substantial at the high concentrations at which the native-like precursor would form dimers but the assembly-deficient analogue would not. The native-like semisynthetic precursor was more stable than the assembly-deficient precursor analogue to tryptic digestion. The concentration-dependent effects of neurophysin, both intramolecularly as a precursor domain and intermolecularly as an interacting protein, are likely to occur in the secretory granules in which the biosynthetic precursors are packaged. The molecular organization of both hormone/neurophysin precursors and the noncovalently complexed hormone-neurophysin intermediates can be expected to play a role in modulating enzymatic processing reactions that lead to mature neurohypophysial hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号