首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The jimpy mouse, an X-linked recessive dysmyelinating and demyelinating mutant, has been shown to contain abnormal myelin proteolipid protein (PLP) mRNA. To understand the molecular basis of the mutation, we analyzed the structure of PLP mRNA by an RNase-mapping procedure, using the probes specific to each exon of the mouse PLP gene. We found that the fifth exon of the PLP gene is not utilized in the jimpy.  相似文献   

3.
Jimpy is one of many related mutations affecting the myelin proteolipid protein gene that causes severe hypomyelination in the central nervous system (CNS). Underlying the hypomyelination is a failure of oligodendrocytes (OLs) to differentiate, and the premature death of large numbers of OLs during the developmental period. Previous light and electron microscopic evidence suggested that jimpy OLs die in a manner consistent with programmed cell death. We have used TUNEL staining as a biochemical marker for apoptosis in conjunction with immunostaining for OL and myelin markers. At 13 - 14 days postnatal, a time when the number of dying OLs in jimpy CNS is increased more than five times normal, there are only modest increases (70% in spinal cord; 20% in cerebral cortex) in TUNEL labeled cells in mutant CNS tissues. The results in vitro are similar, and only a small per cent of TUNEL labeled cells have the antigenic phenotype of OLs. The discrepancy between numbers of dying and TUNEL labeled cells suggests either that most jimpy OLs do not undergo programmed cell death or that the biochemical pathways leading to their death do not involve DNA fragmentation which is detected by the TUNEL method. We also present evidence that jimpy OLs show increased survival and enhanced differentiation when they are grown in vitro in medium conditioned by cells lines which express products of the proteolipid protein gene. Cell lines expressing proteolipid protein and the alternatively spliced DM20 protein have differential effects on cell numbers and production of myelin-like membranes.  相似文献   

4.
Myelin Proteolipid Protein Gene Expression in Jimpy and Jimpymsd Mice   总被引:2,自引:1,他引:1  
Proteolipid protein (PLP) gene expression was studied in the dysmyelinating mouse mutant jimpy(msd) (jpmsd; myelin synthesis deficient) and compared with that in wild-type mice and the allelic mutant, jimpy (jp). Southern analyses of genomic DNA from jpmsd mice revealed no major rearrangements of the PLP gene relative to the wild-type mouse PLP gene. PLP-specific mRNA levels were significantly reduced in these mutant mice, although both the 3.2- and 2.4-kilobase PLP-specific mRNAs were seen. Also, no size differences in either PLP or DM20 mRNAs were found by S1 nuclease assays of brain RNA from either jpmsd or wild-type mice. Both PLP and DM20 protein were detectable at low levels in jpmsd brain homogenates, and these proteins comigrated with PLP and DM20 protein from normal mice. Western analyses showed an altered PLP:DM20 ratio in jpmsd mice relative to wild-type mice; DM20 levels exceeded PLP levels. It is surprising that a similar pattern of expression was seen in normal mice at less than 10 days of age: DM20 protein expression preceding PLP expression. Thus, jpmsd mice are capable of synthesizing normal PLP and DM20 protein; however, the PLP gene defect has affected the normal developmental pattern of expression for these two proteins.  相似文献   

5.
6.
Several genetic disorders that occur in animals and in humans result in an inability to synthesize normal myelin. Some of these disorders are inherited in an X-linked manner. The localization of the myelin proteolipid protein (PLP) gene to the X chromosome has directed the study of X-linked myelination disorders toward PLP. The myelin-deficient rat is one such X-linked dysmyelinating mutant. From a cDNA library constructed from myelin-deficient rat brain mRNA, we have isolated and sequenced cDNAs corresponding to PLP and its alternatively spliced isoform, DM-20. An A to C transition was detected in these cDNAs, which results in a threonine to proline change at amino acid 74 in both PLP and DM-20. No other substitutions were seen in the cDNA sequences. Polymerase chain reaction amplification and sequencing of the corresponding genomic regions were used to confirm the single base change. This substitution occurs in a highly hydrophobic portion of the protein that is thought to be an alpha-helical transmembrane segment. The presence of a helix-breaking amino acid such as proline in this segment is likely to influence the ability of the protein to interact with the membrane.  相似文献   

7.
8.
9.
The jimpy mutation of the X-linked proteolipid protein (Plp) gene causes dysmyelination and premature death of the mice. The established phenotype is characterised by severe hypomyelination, increased numbers of dead oligodendrocytes and astrocytosis. The purpose of this study was to define the earliest cellular abnormalities in the cervical spinal cord. We find that on the first and third postnatal days the amount of myelin in jimpy spinal cord is approximately 20% of wild-type. However, the total glial cell density, the number of dead glial cells and the number and distribution of Plp-positive cells, as assessed by in situ hybridization, are similar to wild-type during the first week of life. Immunostaining of cryosections has identified that jimpy spinal cords express on schedule, a variety of antigens associated with mature oligodendrocytes. Dissociated oligodendrocytes, cultured for 18 hours to reflect their in vivo differentiation, express MBP and surface myelin-associated glycoprotein at the same frequency as wild-type. By comparison, the proportion of jimpy oligodendrocytes expressing surface myelin/oligodendrocyte glycoprotein is reduced by approximately 34%. In vivo, however, only a small minority of axons is surrounded by a collar of myelin-associated glycoprotein, suggesting that the majority of jimpy oligodendrocytes fail to make appropriate ensheathment of axons. Although the DM20 isoform is expressed in the embryonic CNS prior to myelin formation, the cellular abnormalities appear to correspond to the time at which the Plp isoform becomes predominant. The results suggest that the primary abnormality in jimpy is the inability of oligodendrocytes to properly associate with, and then ensheath, axons and that oligodendrocyte death compounds, rather than initiates, the established phenotype.  相似文献   

10.
11.
In addition to classic proteolipid protein (PLP) and DM20, the mouse myelin proteolipid gene produces the sr-PLP and sr-DM20 proteins. The sr-isoforms are localized to the cell bodies of both oligodendrocytes and neurons. However, they are expressed to a greater extent in neurons than they are in glia. In this study, we examined expression of the sr-proteolipids in the mouse embryo using immunohistochemistry with an sr-PLP/DM20 specific antibody. Widespread expression of the sr-proteins was found in many nonmyelinating cell types. In particular, strong immunoreactivity was detected in motor neurons of both the autonomic and somatic nervous systems as well as in striated muscle. This pattern of expression persisted throughout the embryonic period studied. Thus, the sr-proteolipids are expressed prior to the onset of myelination and in a much broader array of cell types than their classic counterparts. These results support the conclusion that the sr-isoforms of the PLP gene have a biological role independent of myelination.  相似文献   

12.
The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled. Misregulation of the gene in humans can result in the dysmyelinating disorder Pelizaeus-Merzbacher disease, and in transgenic mice carrying a null mutation or extra copies of the gene can result in a variety of conditions, from late onset demyelination and axonopathy, to severe early onset dysmyelination. In this study we have examined the effects of Plp intron 1 DNA in mediating proper developmental expression of Plp-lacZ fusion genes in transgenic mice. Our results reveal the importance of Plp intron 1 sequences in instigating the expected surge in Plp-lacZ gene activity during (and following) the active myelination period of brain development. Transgene expression was also detected in the testis (Leydig cells), however, the presence or absence of Plp intron 1 sequences had no effect on the temporal profile in the testis. Surprisingly, expression of the transgene missing Plp intron 1 DNA was always higher in the testis, as compared to the brain, in all of the transgenic lines generated.  相似文献   

13.
We studied the myelination of the visual pathway during the ontogeny of the lizard Gallotia galloti using immunohistochemical methods to stain the myelin basic protein (MBP) and proteolipid protein (PLP/DM20), and electron microscopy. The staining pattern for the PLP/DM20 and MBP overlapped during the lizard ontogeny and was first observed at E39 in cell bodies and fibers located in the temporal optic nerve, optic chiasm, middle optic tract, and in the stratum album centrale of the optic tectum (OT). The expression of these proteins extended to the nerve fiber layer (NFL) of the temporal retina and to the outer strata of the OT at E40. From hatching onwards, the labeling became stronger and extended to the entire visual pathway. Our ultrastructural data in postnatal and adult animals revealed the presence of both myelinated and unmyelinated retinal ganglion cell axons in all visual areas, with a tendency for the larger axons to show the thicker myelin sheaths. Moreover, two kinds of oligodendrocytes were described: peculiar oligodendrocytes displaying loose myelin sheaths were only observed in the NFL, whereas typical medium electron-dense oligodendrocytes displaying compact myelin sheaths were observed in the rest of the visual areas. The weakest expression of the PLP/DM20 in the NFL of the retina appears to be linked to the loose appearance of its myelin sheaths. We conclude that typical and peculiar oligodendrocytes are involved in an uneven myelination process, which follows a temporo-nasal and rostro-caudal gradient in the retina and ON, and a ventro-dorsal gradient in the OT.  相似文献   

14.
15.
Previous tissue culture studies indicate that the level of native proteolipid protein (PLP) or mutated PLP regulates the number of oligodendrocytes (Olgs). The regulation of Olg number is most likely due to toxicity of over-expression of native PLP or mis-sense mutations of PLP. We tested, in vivo and in vitro, the hypothesis that the absence of native PLP or reduced amounts of mutated PLP leads to an increase in numbers of Olgs and a corresponding decrease in the number of apoptotic Olgs. In cultures derived from PLP deficient mice, the number of Olgs is twofold greater than in wild-type mice. In primary glial cultures or in enriched OLG cultures, in which the synthesis of native PLP is blocked using antisense technology, the number of apoptotic cells is several-fold reduced. Injection of PLP antisense oligodeoxynucleotides into jimpy (jp) mice reduces the number of dying glia in spinal cord 3x compared to controls, and increased the number of myelinated fibers. These studies demonstrate that inhibition of native or mutant PLP synthesis directly reduces apoptosis. The regulation of apoptosis by PLP gene expression occurs independently of myelination, indicating that the PLP gene has multiple primary functions.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

16.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

17.
Proteolipid protein (PLP) is a major structural component of central nervous system (CNS) myelin. Evidence exists that PLP or the related splice variant DM-20 protein may also play a role in early development of oligodendrocytes (OLs), the cells that form CNS myelin. There are several naturally occurring mutations of the PLP gene that have been used to study the roles of PLP both in myelination and in OL differentiation. The PLP mutation in the jimpy (jp) mouse has been extensively characterized. These mutants produce no detectable PLP and exhibit an almost total lack of CNS myelin. Additionally, most OLs in affected animals die prematurely, before producing myelin sheaths. We have studied cultures of jp CNS in order to understand whether OL survival and myelin formation require production of normal PLP. When grown in primary cultures, jp OLs mimic the relatively undifferentiated phenotype of jp OLs in vivo. They produce little myelin basic protein (MBP), never immunostain for PLP, and rarely elaborate myelin-like membranes. We report here that jp OLs grown in medium conditioned by normal astrocytes synthesize MBP and incorporate it into membrane expansions. Some jp OLs grown in this way stain with PLP antibodies, including an antibody to a peptide sequence specific for the mutant jp PLP. This study shows that: (1) an absence of PLP does not necessarily lead to dysmyelination or OL death; (2) OLs are capable of translating at least a portion of the predicted jp PLP; (3) the abnormal PLP made in the cultured jp cells is not toxic to OLs. These results also highlight the importance of environmental factors in controlling OL phenotype. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oligodendrocyte glycoprotein), and peroxisomal markers [adrenoleukodystrophy protein, PMP70, acyl-CoA oxidase 1 (ACOX1), l -peroxisomal bifunctional enzyme, and catalase]. Using electron microscopy, peroxisomes were identified in the two cell lines. Gene expression (ATP-binding cassette, Abcd1 , Abcd2 , Abcd3 , and Acox1 ) involved in peroxisomal transport or β-oxidation of fatty acids was evaluated using quantitative PCR. 4-phenylbutyrate treatment increases expression of ACOX1, l -peroxisomal bifunctional enzyme, PLP, myelin oligodendrocyte glycoprotein, and CNPase, mainly in 158N cells. In both cell lines, 4-phenylbutyrate-induced ACOX1 and catalase activities while only Abcd2 gene was up-regulated in 158JP. Moreover, the higher mitochondrial activity and content observed in 158JP were associated with higher glutathione content and increased basal production of reactive oxygen species revealing different redox statuses. Altogether, 158N and 158JP cells will permit studying the relationships between peroxisomal defects, mitochondrial activity, and oligodendrocyte functions.  相似文献   

19.
20.
Transgenic mice were generated with a fusion gene carrying a portion of the murine myelin proteolipid protein (PLP) gene, including the first intron, fused to the E. coli LacZ gene. Three transgenic lines were derived and all lines expressed the transgene in central nervous system white matter as measured by a histochemical assay for the detection of beta-galactosidase activity. PLP-LacZ transgene expression was regulated in both a spatial and temporal manner, consistent with endogenous PLP expression. Moreover, the transgene was expressed specifically in oligodendrocytes from primary mixed glial cultures prepared from transgenic mouse brains and appeared to be developmentally regulated in vitro as well. Transgene expression occurred in embryos, presumably in pre- or nonmyelinating cells, rather extensively throughout the peripheral nervous system and within very discrete regions of the central nervous system. Surprisingly, beta- galactosidase activity was localized predominantly in the myelin in these transgenic animals, suggesting that the NH2-terminal 13 amino acids of PLP, which were present in the PLP-LacZ gene product, were sufficient to target the protein to the myelin membrane. Thus, the first half of the PLP gene contains sequences sufficient to direct both spatial and temporal gene regulation and to encode amino acids important in targeting the protein to the myelin membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号