首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Owing to the exponential growth of genome databases, phylogenetic trees are now widely used to test a variety of evolutionary hypotheses. Nevertheless, computation time burden limits the application of methods such as maximum likelihood nonparametric bootstrap to assess reliability of evolutionary trees. As an alternative, the much faster Bayesian inference of phylogeny, which expresses branch support as posterior probabilities, has been introduced. However, marked discrepancies exist between nonparametric bootstrap proportions and Bayesian posterior probabilities, leading to difficulties in the interpretation of sometimes strongly conflicting results. As an attempt to reconcile these two indices of node reliability, we apply the nonparametric bootstrap resampling procedure to the Bayesian approach. The correlation between posterior probabilities, bootstrap maximum likelihood percentages, and bootstrapped posterior probabilities was studied for eight highly diverse empirical data sets and were also investigated using experimental simulation. Our results show that the relation between posterior probabilities and bootstrapped maximum likelihood percentages is highly variable but that very strong correlations always exist when Bayesian node support is estimated on bootstrapped character matrices. Moreover, simulations corroborate empirical observations in suggesting that, being more conservative, the bootstrap approach might be less prone to strongly supporting a false phylogenetic hypothesis. Thus, apparent conflicts in topology recovered by the Bayesian approach were reduced after bootstrapping. Both posterior probabilities and bootstrap supports are of great interest to phylogeny as potential upper and lower bounds of node reliability, but they are surely not interchangeable and cannot be directly compared.  相似文献   

3.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values given an assumed prior probability distribution for each parameter. Little is known about the effects of integrating over branch length uncertainty on posterior probabilities when different priors are assumed. Here, we show that integrating over uncertainty using a wide range of typical prior assumptions strongly affects posterior probabilities, causing them to deviate from those that would be inferred if branch lengths were known in advance; only when there is no uncertainty to integrate over does the average posterior probability of a group of trees accurately predict the proportion of correct trees in the group. The pattern of branch lengths on the true tree determines whether integrating over uncertainty pushes posterior probabilities upward or downward. The magnitude of the effect depends on the specific prior distributions used and the length of the sequences analyzed. Under realistic conditions, however, even extraordinarily long sequences are not enough to prevent frequent inference of incorrect clades with strong support. We found that across a range of conditions, diffuse priors--either flat or exponential distributions with moderate to large means--provide more reliable inferences than small-mean exponential priors. An empirical Bayes approach that fixes branch lengths at their maximum likelihood estimates yields posterior probabilities that more closely match those that would be inferred if the true branch lengths were known in advance and reduces the rate of strongly supported false inferences compared with fully Bayesian integration.  相似文献   

4.
Xie W  Lewis PO  Fan Y  Kuo L  Chen MH 《Systematic biology》2011,60(2):150-160
The marginal likelihood is commonly used for comparing different evolutionary models in Bayesian phylogenetics and is the central quantity used in computing Bayes Factors for comparing model fit. A popular method for estimating marginal likelihoods, the harmonic mean (HM) method, can be easily computed from the output of a Markov chain Monte Carlo analysis but often greatly overestimates the marginal likelihood. The thermodynamic integration (TI) method is much more accurate than the HM method but requires more computation. In this paper, we introduce a new method, steppingstone sampling (SS), which uses importance sampling to estimate each ratio in a series (the "stepping stones") bridging the posterior and prior distributions. We compare the performance of the SS approach to the TI and HM methods in simulation and using real data. We conclude that the greatly increased accuracy of the SS and TI methods argues for their use instead of the HM method, despite the extra computation needed.  相似文献   

5.
6.
Polytomies and Bayesian phylogenetic inference   总被引:16,自引:0,他引:16  
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short branch lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.  相似文献   

7.
Many biogeographic problems are tested on phylogenetic trees. Typically, the uncertainty in the phylogeny is not accommodated when investigating the biogeography of the organisms. Here we present a method that accommodates uncertainty in the phylogenetic trees. Moreover, we describe a simple method for examining the support for competing biogeographic scenarios. We illustrate the method using mitochondrial DNA sequences sampled from modern humans. The geographic origin of modern human mtDNA is inferred to be in Africa, although support for this hypothesis was ambiguous for data from an early paper.  相似文献   

8.

Background  

The rapidly increasing speed with which genome sequence data can be generated will be accompanied by an exponential increase in the number of sequenced eukaryotes. With the increasing number of sequenced eukaryotic genomes comes a need for bioinformatic techniques to aid in functional annotation. Ideally, genome context based techniques such as proximity, fusion, and phylogenetic profiling, which have been so successful in prokaryotes, could be utilized in eukaryotes. Here we explore the application of phylogenetic profiling, a method that exploits the evolutionary co-occurrence of genes in the assignment of functional linkages, to eukaryotic genomes.  相似文献   

9.
Background

Biological networks describes the mechanisms which govern cellular functions. Temporal networks show how these networks evolve over time. Studying the temporal progression of network topologies is of utmost importance since it uncovers how a network evolves and how it resists to external stimuli and internal variations. Two temporal networks have co-evolving subnetworks if the evolving topologies of these subnetworks remain similar to each other as the network topology evolves over a period of time. In this paper, we consider the problem of identifying co-evolving subnetworks given a pair of temporal networks, which aim to capture the evolution of molecules and their interactions over time. Although this problem shares some characteristics of the well-known network alignment problems, it differs from existing network alignment formulations as it seeks a mapping of the two network topologies that is invariant to temporal evolution of the given networks. This is a computationally challenging problem as it requires capturing not only similar topologies between two networks but also their similar evolution patterns.

Results

We present an efficient algorithm, Tempo, for solving identifying co-evolving subnetworks with two given temporal networks. We formally prove the correctness of our method. We experimentally demonstrate that Tempo scales efficiently with the size of network as well as the number of time points, and generates statistically significant alignments—even when evolution rates of given networks are high. Our results on a human aging dataset demonstrate that Tempo identifies novel genes contributing to the progression of Alzheimer’s, Huntington’s and Type II diabetes, while existing methods fail to do so.

Conclusions

Studying temporal networks in general and human aging specifically using Tempo enables us to identify age related genes from non age related genes successfully. More importantly, Tempo takes the network alignment problem one huge step forward by moving beyond the classical static network models.

  相似文献   

10.
Four New World genera of dwarf boas (Exiliboa, Trachyboa, Tropidophis, and Ungaliophis) have been placed by many systematists in a single group (traditionally called Tropidophiidae). However, the monophyly of this group has been questioned in several studies. Moreover, the overall relationships among basal snake lineages, including the placement of the dwarf boas, are poorly understood. We obtained mtDNA sequence data for 12S, 16S, and intervening tRNA-val genes from 23 species of snakes representing most major snake lineages, including all four genera of New World dwarf boas. We then examined the phylogenetic position of these species by estimating the phylogeny of the basal snakes. Our phylogenetic analysis suggests that New World dwarf boas are not monophyletic. Instead, we find Exiliboa and Ungaliophis to be most closely related to sand boas (Erycinae), boas (Boinae), and advanced snakes (Caenophidea), whereas Tropidophis and Trachyboa form an independent clade that separated relatively early in snake radiation. Our estimate of snake phylogeny differs significantly in other ways from some previous estimates of snake phylogeny. For instance, pythons do not cluster with boas and sand boas, but instead show a strong relationship with Loxocemus and Xenopeltis. Additionally, uropeltids cluster strongly with Cylindrophis, and together are embedded in what has previously been considered the macrostomatan radiation. These relationships are supported by both bootstrapping (parametric and nonparametric approaches) and Bayesian analysis, although Bayesian support values are consistently higher than those obtained from nonparametric bootstrapping. Simulations show that Bayesian support values represent much better estimates of phylogenetic accuracy than do nonparametric bootstrap support values, at least under the conditions of our study.  相似文献   

11.
Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.  相似文献   

12.
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution.  相似文献   

13.
Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not much is currently known concerning the performance and computational issues of these methods when fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen widespread application in the field due to the lack of implementations of these computationally demanding techniques in commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood estimators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made using the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior simulation-based analogue of Akaike's information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model comparison approach that shares with the HME the appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used in this article are now available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses.  相似文献   

14.
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock'', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue ‘Dating species divergences using rocks and clocks’.  相似文献   

15.
The recent development of Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) techniques has facilitated the exploration of parameter-rich evolutionary models. At the same time, stochastic models have become more realistic (and complex) and have been extended to new types of data, such as morphology. Based on this foundation, we developed a Bayesian MCMC approach to the analysis of combined data sets and explored its utility in inferring relationships among gall wasps based on data from morphology and four genes (nuclear and mitochondrial, ribosomal and protein coding). Examined models range in complexity from those recognizing only a morphological and a molecular partition to those having complex substitution models with independent parameters for each gene. Bayesian MCMC analysis deals efficiently with complex models: convergence occurs faster and more predictably for complex models, mixing is adequate for all parameters even under very complex models, and the parameter update cycle is virtually unaffected by model partitioning across sites. Morphology contributed only 5% of the characters in the data set but nevertheless influenced the combined-data tree, supporting the utility of morphological data in multigene analyses. We used Bayesian criteria (Bayes factors) to show that process heterogeneity across data partitions is a significant model component, although not as important as among-site rate variation. More complex evolutionary models are associated with more topological uncertainty and less conflict between morphology and molecules. Bayes factors sometimes favor simpler models over considerably more parameter-rich models, but the best model overall is also the most complex and Bayes factors do not support exclusion of apparently weak parameters from this model. Thus, Bayes factors appear to be useful for selecting among complex models, but it is still unclear whether their use strikes a reasonable balance between model complexity and error in parameter estimates.  相似文献   

16.
The mitochondrial genome is one of the most frequently used loci in phylogenetic and phylogeographic analyses, and it is becoming increasingly possible to sequence and analyze this genome in its entirety from diverse taxa. However, sequencing the entire genome is not always desirable or feasible. Which genes should be selected to best infer the evolutionary history of the mitochondria within a group of organisms, and what properties of a gene determine its phylogenetic performance? The current study addresses these questions in a Bayesian phylogenetic framework with reference to a phylogeny of plethodontid and related salamanders derived from 27 complete mitochondrial genomes; this topology is corroborated by nuclear DNA and morphological data. Evolutionary rates for each mitochondrial gene and divergence dates for all nodes in the plethodontid mitochondrial genome phylogeny were estimated in both Bayesian and maximum likelihood frameworks using multiple fossil calibrations, multiple data partitions, and a clock-independent approach. Bayesian analyses of individual genes were performed, and the resulting trees compared against the reference topology. Ordinal logistic regression analysis of molecular evolution rate, gene length, and the G-shape parameter a demonstrated that slower rate of evolution and longer gene length both increased the probability that a gene would perform well phylogenetically. Estimated rates of molecular evolution vary 84-fold among different mitochondrial genes and different salamander lineages, and mean rates among genes vary 15-fold. Despite having conserved amino acid sequences, cox1, cox2, cox3, and cob have the fastest mean rates of nucleotide substitution, and the greatest variation in rates, whereas rrnS and rrnL have the slowest rates. Reasons underlying this rate variation are discussed, as is the extensive rate variation in cox1 in light of its proposed role in DNA barcoding.  相似文献   

17.
Predictions of metal consumption are vital for criticality assessments and sustainability analyses. Although demand for a material varies strongly by region and end-use sector, statistical models of demand typically predict demand using regression analyses at an aggregated global level (“fully pooled models”). “Un-pooled” regression models that predict demand at a disaggregated country or regional level face challenges due to limited data availability and large uncertainty. In this paper, we propose a Bayesian hierarchical model that can simultaneously identify heterogeneous demand parameters (like price and income elasticities) for individual regions and sectors, as well as global parameters. We demonstrate the model's value by estimating income and price elasticity of copper demand in five sectors (Transportation, Electrical, Construction, Manufacturing, and Other) and five regions (North America, Europe, Japan, China, and Rest of World). To validate the benefits of the Bayesian approach, we compare the model to both a “fully pooled” and an “un-pooled” model. The Bayesian model can predict global demand with similar uncertainty as a fully pooled regression model, while additionally capturing regional heterogeneity in income elasticity of demand. Compared to un-pooled models that predict demand for individual countries and sectors separately, our model reduces the uncertainty of parameter estimates by more than 50%. The hierarchical Bayesian modeling approach we propose can be used for various commodities, improving material demand projections used to study the impact of policies on mining sector emissions and informing investment in critical material production.  相似文献   

18.
In recent years, the emphasis of theoretical work on phylogenetic inference has shifted from the development of new tree inference methods to the development of methods to measure the statistical support for the topologies. This paper reviews 3 approaches to assign support values to branches in trees obtained in the analysis of molecular sequences: the bootstrap, the Bayesian posterior probabilities for clades, and the interior branch tests. In some circumstances, these methods give different answers. It should not be surprising: their assumptions are different. Thus the interior branch tests assume that a given topology is true and only consider if a particular branch length is longer than zero. If a tree is incorrect, a wrong branch (a low bootstrap or Bayesian support may be an indication) may have a non-zero length. If the substitution model is oversimplified, the length of a branch may be overestimated, and the Bayesian support for the branch may be inflated. The bootstrap, on the other hand, approximates the variance of the data under the real model of sequence evolution, because it involves direct resampling from this data. Thus the discrepancy between the Bayesian support and the bootstrap support may signal model inaccuracy. In practical application, use of all 3 methods is recommended, and if discrepancies are observed, then a careful analysis of their potential origins should be made.  相似文献   

19.
Nonhomogeneous substitution models have been introduced for phylogenetic inference when the substitution process is nonstationary, for example, when sequence composition differs between lineages. Existing models can have many parameters, and it is then difficult and computationally expensive to learn the parameters and to select the optimal model complexity. We extend an existing nonhomogeneous substitution model by introducing a reversible jump Markov chain Monte Carlo method for efficient Bayesian inference of the model order along with other phylogenetic parameters of interest. We also introduce a new hierarchical prior which leads to more reasonable results when only a small number of lineages share a particular substitution process. The method is implemented in the PHASE software, which includes specialized substitution models for RNA genes with conserved secondary structure. We apply an RNA-specific nonhomogeneous model to a structure-based alignment of rRNA sequences spanning the entire tree of life. A previous study of the same genes from a similar set of species found robust evidence for a mesophilic last universal common ancestor (LUCA) by inference of the G+C composition at the root of the tree. In the present study, we find that the helical GC composition at the root is strongly dependent on the root position. With a bacterial rooting, we find that there is no longer strong support for either a mesophile or a thermophile LUCA, although a hyperthermophile LUCA remains unlikely. We discuss reasons why results using only RNA helices may differ from results using all aligned sites when applying nonhomogeneous models to RNA genes.  相似文献   

20.
Phylogenetic comparative methods use tree topology, branch lengths, and models of phenotypic change to take into account nonindependence in statistical analysis. However, these methods normally assume that trees and models are known without error. Approaches relying on evolutionary regimes also assume specific distributions of character states across a tree, which often result from ancestral state reconstructions that are subject to uncertainty. Several methods have been proposed to deal with some of these sources of uncertainty, but approaches accounting for all of them are less common. Here, we show how Bayesian statistics facilitates this task while relaxing the homogeneous rate assumption of the well-known phylogenetic generalized least squares (PGLS) framework. This Bayesian formulation allows uncertainty about phylogeny, evolutionary regimes, or other statistical parameters to be taken into account for studies as simple as testing for coevolution in two traits or as complex as testing whether bursts of phenotypic change are associated with evolutionary shifts in intertrait correlations. A mixture of validation approaches indicates that the approach has good inferential properties and predictive performance. We provide suggestions for implementation and show its usefulness by exploring the coevolution of ankle posture and forefoot proportions in Carnivora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号