首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The establishment of silencing at the silent mating-type locus, HMR, in Saccharomyces cerevisiae requires that yeast pass through S phase of the cell cycle, yet requires neither the initiation of DNA replication at the locus destined to become silenced nor the passage of a replication fork through that locus. We tested whether this S-phase requirement reflects a window within the cell cycle permissive for recruitment of Sir proteins to HMR. The S-phase-restricted event necessary for silencing occurred after recruitment of Sir proteins to HMR. Moreover, cells arrested in early S phase formed silent chromatin at HMR, provided HMR was on a nonreplicating template. Replicating templates required a later step for silencing. These results provide temporal resolution of discrete steps in the formation of silent chromatin and suggest that more than one cell cycle-regulated event may be necessary for the establishment of silencing.  相似文献   

3.
The initiation and maintenance of G1 cell cycle arrest is a key feature of animal development. In the Drosophila ectoderm, G1 arrest first appears during the seventeenth embryonic cell cycle. The initiation of G1(17) arrest requires the developmentally-induced expression of Dacapo, a p27-like Cyclin E-Cdk2 inhibitor. The maintenance of G1(17) arrest requires Rbf1-dependent repression of E2f1-regulated replication factor genes, which are expressed continuously during cycles 1-16 when S phase immediately follows mitosis. The mechanisms that trigger Rbf1 repressor function and mediate G1(17) maintenance are unknown. Here we show that the initial downregulation of expression of the E2f1-target gene RnrS, which occurs during cycles 15 and 16 prior to entry into G1(17), does not require Rbf1 or p27(Dap). This suggests a mechanism for Rbf1-independent control of E2f1 during early development. We show that E2f1 protein is destroyed in a cell cycle-dependent manner during S phase of cycles 15 and 16. E2f1 is destroyed during early S phase, and requires ongoing DNA replication. E2f1 protein reaccumulates in epidermal cells arrested in G1(17), and in these cells the induction of p27(Dap) activates Rbf1 to repress E2f1-target genes to maintain a stable G1 arrest.  相似文献   

4.
The murine immunoglobulin heavy-chain (Igh) locus provides an important model for understanding the replication of tissue-specific gene loci in mammalian cells. We have observed two DNA replication programs with dramatically different temporal replication patterns for the Igh locus in B-lineage cells. In pro- and pre-B-cell lines and in ex vivo-expanded pro-B cells, the entire locus is replicated early in S phase. In three cell lines that exhibit the early-replication pattern, we found that replication forks progress in both directions through the constant-region genes, which is consistent with the activation of multiple initiation sites. In contrast, in plasma cell lines, replication of the Igh locus occurs through a triphasic pattern similar to that previously detected in MEL cells. Sequences downstream of the Igh-C alpha gene replicate early in S, while heavy-chain variable (Vh) gene sequences replicate late in S. An approximately 500-kb transition region connecting sequences that replicate early and late is replicated progressively later in S. The formation of the transition region in different cell lines is independent of the sequences encompassed. In B-cell lines that exhibit a triphasic-replication pattern, replication forks progress in one direction through the examined constant-region genes. Timing data and the direction of replication fork movement indicate that replication of the transition region occurs by a single replication fork, as previously described for MEL cells. Associated with the contrasting replication programs are differences in the subnuclear locations of Igh loci. When the entire locus is replicated early in S, the Igh locus is located away from the nuclear periphery, but when Vh gene sequences replicate late and there is a temporal-transition region, the entire Igh locus is located near the nuclear periphery.  相似文献   

5.
6.
7.
Lee LA  Elfring LK  Bosco G  Orr-Weaver TL 《Genetics》2001,158(4):1545-1556
The early cell cycles of Drosophila embryogenesis involve rapid oscillations between S phase and mitosis. These unique S-M cycles are driven by maternal stockpiles of components necessary for DNA replication and mitosis. Three genes, pan gu (png), plutonium (plu), and giant nuclei (gnu) are required to control the cell cycle specifically at the onset of Drosophila development by inhibiting DNA replication and promoting mitosis. PNG is a protein kinase that is in a complex with PLU. We employed a sensitized png mutant phenotype to screen for genes that when reduced in dosage would dominantly suppress or enhance png. We screened deficiencies covering over 50% of the autosomes and identified both enhancers and suppressors. Mutations in eIF-5A and PP1 87B dominantly suppress png. Cyclin B was shown to be a key PNG target. Mutations in cyclin B dominantly enhance png, whereas png is suppressed by cyclin B overexpression. Suppression occurs via restoration of Cyclin B protein levels that are decreased in png mutants. The plu and gnu phenotypes are also suppressed by cyclin B overexpression. These studies demonstrate that a crucial function of PNG in controlling the cell cycle is to permit the accumulation of adequate levels of Cyclin B protein.  相似文献   

8.
9.
Cul4 E3 ubiquitin ligases contain the cullin 4 scaffold and the triple beta propeller Ddb1 adaptor protein, but few substrate receptors have been identified. Here, we identify 18 Ddb1- and Cul4-associated factors (DCAFs), including 14 containing WD40 repeats. DCAFs interact with multiple surfaces on Ddb1, and the interaction of WD40-containing DCAFs with Ddb1 requires a conserved "WDXR" motif. DCAF2/Cdt2, which is related to S. pombe Cdt2, functions in Xenopus egg extracts and human cells to destroy the replication licensing protein Cdt1 in S phase and after DNA damage. Depletion of human Cdt2 causes rereplication and checkpoint activation. In Xenopus, Cdt2 is recruited to replication forks via Cdt1 and PCNA, where Cdt1 ubiquitylation occurs. These studies uncover diverse substrate receptors for Cul4 and identify Cdt2 as a conserved component of the Cul4-Ddb1 E3 that is essential to destroy Cdt1 and ensure proper cell cycle regulation of DNA replication.  相似文献   

10.
The nucleus/cytoplasm (N/C) ratio controls S phase dynamics in many biological systems, most notably the abrupt remodeling of the cell cycle that occurs at the midblastula transition in early Xenopus laevis embryos. After an initial series of rapid cleavage cycles consisting only of S and M phases, a critical N/C ratio is reached, which causes a sharp increase in the length of S phase as the cell cycle is reconfigured to resemble somatic cell cycles. How the N/C ratio determines the length of S phase has been a longstanding problem in developmental biology. Using Xenopus egg extracts, we show that DNA replication at high N/C ratio is restricted by one or more limiting substances. We report here that the protein phosphatase PP2A, in conjunction with its B55α regulatory subunit, becomes limiting for replication origin firing at high N/C ratio, and this in turn leads to reduced origin activation and an increase in the time required to complete S phase. Increasing the levels of PP2A catalytic subunit or B55α experimentally restores rapid DNA synthesis at high N/C ratio. Inversely, reduction of PP2A or B55α levels sharply extends S phase even in low N/C extracts. These results identify PP2A-B55α as a link between DNA replication and N/C ratio in egg extracts and suggest a mechanism that may influence the onset of the midblastula transition in vivo.  相似文献   

11.
The transition from G1 to S phase of the cell cycle may be regulated by modification of proteins which are essential for initiating DNA replication. One of the first events during initiation is to unwind the origin DNA and this requires a single-stranded DNA binding protein. RPA, a highly conserved multi-subunit single-stranded DNA binding protein, was first identified as a cellular protein necessary for the initiation of SV40 DNA replication. The 32 kDa subunit of RPA has been shown to be phosphorylated at the start of S phase. Using SV40 replication as a model, we have reproduced in vitro the S phase-dependent phosphorylation of RPA-32 and show that it occurs specifically within the replication initiation complex. Phosphorylated RPA-32 is predominantly associated with DNA. Phosphorylation is not a pre-requisite for association with DNA, but occurs after RPA binds to single-stranded DNA formed at the origin during the initiation phase. The protein kinase(s) which phosphorylates RPA-32 is present at all stages of the cell cycle but RPA-32 does not bind to the SV40 origin or become phosphorylated in extracts from G1 cells. Therefore, the cell cycle-dependent phosphorylation of RPA-32 may be regulated by its binding to single-stranded origin DNA during replication initiation.  相似文献   

12.
The decision for a cell to self-replicate requires passage from G1 to S phase of the cell cycle and initiation of another round of DNA replication. This commitment is a critical one that is tightly regulated by many parallel pathways. Significantly, these pathways converge to result in activation of the cyclin-dependent kinase, cdk2. It is, therefore, important to understand all the mechanisms regulating cdk2 to determine the molecular basis of cell progression. Here we report the identification and characterization of a novel cell cycle gene, designated Speedy (Spy1). Spy1 is 40% homologous to the Xenopus cell cycle gene, X-Spy1. Similar to its Xenopus counterpart, human Speedy is able to induce oocyte maturation, suggesting similar biological characteristics. Spy1 mRNA is expressed in several human tissues and immortalized cell lines and is only expressed during the G1/S phase of the cell cycle. Overexpression of Spy1 protein demonstrates that Spy1 is nuclear and results in enhanced cell proliferation. In addition, flow cytometry profiles of these cells demonstrate a reduction in G1 population. Changes in cell cycle regulation can be attributed to the ability of Spy1 to bind to and prematurely activate cdk2 independent of cyclin binding. We demonstrate that Spy1-enhanced cell proliferation is dependent on cdk2 activation. Furthermore, abrogation of Spy1 expression, through the use of siRNA, demonstrates that Spy1 is an essential component of cell proliferation pathways. Hence, human Speedy is a novel cell cycle protein capable of promoting cell proliferation through the premature activation of cdk2 at the G1/S phase transition.  相似文献   

13.
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.  相似文献   

14.
15.
S phase is characterized by the replication of DNA and assembly of chromatin. This requires the synthesis of large amounts of histone proteins to package the newly replicated DNA. Histone mRNAs are the only mRNAs that do not have polyA tails, ending instead in a conserved stemloop sequence. The stemloop binding protein (SLBP) that binds the 3' end of histone mRNA is cell cycle regulated and SLBP is required in all steps of histone mRNA metabolism. Activation of cyclin E/cdk2 prior to entry into S phase is critical for initiation of DNA replication and histone mRNA accumulation. At the end of S phase SLBP is rapidly degraded as a result of phosphorylation of SLBP by cyclin A/cdk1 and CK2 effectively shutting off histone mRNA biosynthesis. E2F1, which is required for expression of many S-phase genes, is regulated in parallel with SLBP and its degradation also requires a cyclin binding site, suggesting that it may also be regulated by the same pathway. It is likely that activation of cyclin A/cdk1 so helps inhibit both DNA replication and histone mRNA accumulation, marking the end of S phase and entry into G2 phase.  相似文献   

16.
Chromosome replication initiates without sequence specificity at average intervals of approximately 10 kb during the rapid cell cycles of early Xenopus embryos. If the distribution of origins were random, some inter-origin intervals would be too long to be fully replicated before the end of S phase. To investigate what ensures rapid completion of DNA replication, we have examined the replication intermediates of plasmids of various sizes (5.3-42.2 kbp) in Xenopus egg extracts by two-dimensional gel electrophoresis and electron microscopy. We confirm that replication initiates without sequence specificity on all plasmids. We demonstrate for the first time that multiple initiation events occur on large plasmids, but not on small (<10 kb) plasmids, at average intervals of approximately 10 kb. Origin interference may prevent multiple initiation events on small plasmids. Multiple initiation events are neither synchronous nor regularly spaced. Bubble density is higher on later than on earlier replication intermediates, showing that initiation frequency increases throughout S phase, speeding up replication of late intermediates. We suggest that potential origins are abundant and randomly distributed, but that the increase of initiation frequency during S phase, and possibly origin interference, regulate origin activation to ensure rapid completion of replication.  相似文献   

17.
18.
19.
In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G(2) phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G(2) phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G(2) phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号