首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous epidemiological studies have implicated Clostridium perfringens enterotoxin (CPE) as a virulence factor in the pathogenesis of several gastrointestinal (GI) illnesses caused by C. perfringens type A isolates, including C. perfringens type A food poisoning and non-food-borne GI illnesses, such as antibiotic-associated diarrhoea and sporadic diarrhoea. To further evaluate the importance of CPE in the pathogenesis of these GI diseases, allelic exchange was used to construct cpe knock-out mutants in both SM101 (a derivative of a C. perfringens type A food poisoning isolate carrying a chromosomal cpe gene) and F4969 (a C. perfringens type A non-food-borne GI disease isolate carrying a plasmid-borne cpe gene). Western blot analyses confirmed that neither cpe knock-out mutant could express CPE during either sporulation or vegetative growth, and that this lack of CPE expression could be complemented by transforming these mutants with a recombinant plasmid carrying the wild-type cpe gene. When the virulence of the wild-type, mutant and complementing strains were compared in a rabbit ileal loop model, sporulating (but not vegetative) culture lysates of the wild-type isolates induced significant ileal loop fluid accumulation and intestinal histopathological damage, but neither sporulating nor vegetative culture lysates of the cpe knock-out mutants induced these intestinal effects. However, full sporulation-associated virulence could be restored by complementing these cpe knock-out mutants with a recombinant plasmid carrying the wild-type cpe gene, which confirms that the observed loss of virulence for the cpe knock-out mutants results from the specific inactivation of the cpe gene and the resultant loss of CPE expression. Therefore, in vivo analysis of our isogenic cpe mutants indicates that CPE expression is necessary for these two cpe-positive C. perfringens type A human disease isolates to cause GI effects in the culture lysate:ileal loop model system, a finding that supports CPE as an important virulence factor in GI diseases involving cpe-positive C. perfringens type A isolates.  相似文献   

2.
3.
Of 98 suspected food-borne Clostridium perfringens isolates obtained from a nationwide survey by the Food and Consumer Product Safety Authority in The Netherlands, 59 strains were identified as C. perfringens type A. Using PCR-based techniques, the cpe gene encoding enterotoxin was detected in eight isolates, showing a chromosomal location for seven isolates and a plasmid location for one isolate. Further characterization of these strains by using (GTG)(5) fingerprint repetitive sequence-based PCR analysis distinguished C. perfringens from other sulfite-reducing clostridia but did not allow for differentiation between various types of C. perfringens strains. To characterize the C. perfringens strains further, multilocus sequence typing (MLST) analysis was performed on eight housekeeping genes of both enterotoxic and non-cpe isolates, and the data were combined with a previous global survey covering strains associated with food poisoning, gas gangrene, and isolates from food or healthy individuals. This revealed that the chromosomal cpe strains (food strains and isolates from food poisoning cases) belong to a distinct cluster that is significantly distant from all the other cpe plasmid-carrying and cpe-negative strains. These results suggest that different groups of C. perfringens have undergone niche specialization and that a distinct group of food isolates has specific core genome sequences. Such findings have epidemiological and evolutionary significance. Better understanding of the origin and reservoir of enterotoxic C. perfringens may allow for improved control of this organism in foods.  相似文献   

4.
Clostridium perfringens enterotoxin (CPE) is a major virulence factor for human gastrointestinal diseases, such as food poisoning and antibiotic associated diarrhea. The CPE-encoding gene (cpe) can be chromosomal or plasmid-borne. Recent development of conventional PCR cpe-genotyping assays makes it possible to identify cpe location (chromosomal or plasmid) in type A isolates. Initial studies for developing cpe genotyping assays indicated that all cpe-positive strains isolated from sickened patients were typable by cpe-genotypes, but surveys of C. perfringens environmental strains or strains from feces of healthy people suggested that this assay might not be useful for some cpe-carrying type A isolates. In the current study, a pulsed-field gel electrophoresis Southern blot assay showed that four cpe-genotype untypable isolates carried their cpe gene on a plasmid of ~65 kb. Complete sequence analysis of the ~65 kb variant cpe-carrying plasmid revealed no intact IS elements and a disrupted cytosine methyltransferase (dcm) gene. More importantly, this plasmid contains a conjugative transfer region, a variant cpe gene and variant iota toxin genes. The toxin genes encoded by this plasmid are expressed based upon the results of RT-PCR assays. The ~65 kb plasmid is closely related to the pCPF4969 cpe plasmid of type A isolates. MLST analyses indicated these isolates belong to a unique cluster of C. perfringens. Overall, these isolates carrying a variant functional cpe gene and iota toxin genes represent unique type E strains.  相似文献   

5.
Clostridium perfringens enterotoxin (CPE) is an important virulence factor for both C. perfringens type A food poisoning and several non-food-borne human gastrointestinal diseases. Recent studies have indicated that C. perfringens isolates associated with food poisoning carry a chromosomal cpe gene, while non-food-borne human gastrointestinal disease isolates carry a plasmid cpe gene. However, no explanation has been provided for the strong associations between certain cpe genotypes and particular CPE-associated diseases. Since C. perfringens food poisoning usually involves cooked meat products, we hypothesized that chromosomal cpe isolates are so strongly associated with food poisoning because (i) they are more heat resistant than plasmid cpe isolates, (ii) heating induces loss of the cpe plasmid, or (iii) heating induces migration of the plasmid cpe gene to the chromosome. When we tested these hypotheses, vegetative cells of chromosomal cpe isolates were found to exhibit, on average approximately twofold-higher decimal reduction values (D values) at 55 degrees C than vegetative cells of plasmid cpe isolates exhibited. Furthermore, the spores of chromosomal cpe isolates had, on average, approximately 60-fold-higher D values at 100 degrees C than the spores of plasmid cpe isolates had. Southern hybridization and CPE Western blot analyses demonstrated that all survivors of heating retained their cpe gene in its original plasmid or chromosomal location and could still express CPE. These results suggest that chromosomal cpe isolates are strongly associated with food poisoning, at least in part, because their cells and spores possess a high degree of heat resistance, which should enhance their survival in incompletely cooked or inadequately warmed foods.  相似文献   

6.
In the United States and Europe, food poisoning due to Clostridium perfringens type A is predominantly caused by C. perfringens isolates carrying a chromosomal enterotoxin gene (cpe). Neither the reservoir for these isolates nor the point in the food chain where these bacteria contaminate foods is currently understood. Therefore, the current study investigated whether type A isolates carrying a chromosomal cpe gene are present in two potential reservoirs, i.e., soil and home kitchen surfaces. No C. perfringens isolates were recovered from home kitchen surfaces, but most surveyed soil samples contained C. perfringens. The recovered soil isolates were predominantly type A, but some type C, D, and E soil isolates were also identified. All cpe-positive isolates recovered from soil were genotyped as type A, with their cpe genes on cpe plasmids rather than the chromosome. However, two cpe-positive soil isolates did not carry a classical cpe plasmid. Both of those atypical cpe-positive soil isolates were sporulation capable yet failed to produce C. perfringens enterotoxin, possibly because of differences in their upstream promoter regions. Collectively these results suggest that neither soil nor home kitchen surfaces represent major reservoirs for type A isolates with chromosomal cpe that cause food poisoning, although soil does appear to be a reservoir for cpe-positive isolates causing non-food-borne gastrointestinal diseases.  相似文献   

7.
Clostridium perfringens, a Gram positive, spore-forming anaerobe, is widely distributed in nature. Based upon their production of four major toxins alpha, beta, epsilon and iota, C. perfringens is classified into five toxinotypes (A-E). Some strains produce an enterotoxin (CPE), encoded by the cpe gene, which causes diarrhea in humans and some animals. C. perfringens strains that had been previously isolated and been kept at -80 degrees C were analyzed for the presence of toxin genes and for antimicrobial resistance: 20 from soils, 20 from animal, 20 from human origin and 21 from food non related to outbreaks. According to PCR results, all strains were classified as C. perfringens type A, since only alpha toxin gene was detected, while cpe was detected in two strains (2.5%) isolated from food, as it has been described in other world regions. Antibiotic resistance to at least one antibiotic was detected in 44% of the strains, 41% was resistant to clindamycin, 25% to chloramphenicol, 22% to penicillin and 20% to metronidazole. Soils strains showed the highest resistance percentages to almost all antibiotics. Multiresistance (to three or more antibiotic groups) was detected in the strains from soil (40%), human origin (30%), food (14%) and animal origin (5%). The high resistance rates found may be explained by the widespread use of antimicrobials as growth promoters in plants and animals; also these resistant strains may act as reservoir of resistance genes that may be transferred between bacteria in different environments.  相似文献   

8.
Clostridium perfringens type A food poisoning is caused by C. perfringens isolates carrying a chromosomal enterotoxin gene (cpe), while non-food-borne gastrointestinal (GI) diseases, such as antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD), are caused by C. perfringens plasmid cpe isolates. A recent study reported the association of beta2 toxin (CPB2) with human GI diseases, and particularly AAD/SD, by demonstrating that a large percentage of AAD/SD isolates, in contrast to a small percentage of food poisoning isolates, carry the beta2-toxin gene (cpb2). This putative relationship was further tested in the current study by characterizing 14 cpe+ C. perfringens fecal isolates associated with recent cases of human SD in England (referred to hereafter as SD isolates). These SD isolates were all classified as cpe+ type A, and 12 of the 14 cpe+ isolates carry their cpe gene on the plasmid and 2 carry it on the chromosome. Interestingly, cpb2 is present in only 12 plasmid cpe isolates; 11 isolates carry cpe and cpb2 on different plasmids, but cpe and cpb2 are located on the same plasmid in one isolate. C. perfringens enterotoxin is produced by all 14 cpe+ SD isolates. However, only 10 of the 12 cpe+/cpb2+ SD isolates produced CPB2, with significant variation in amounts. The levels of cpb2 mRNA in low- to high-CPB2-producing SD isolates differed to such an extent (30-fold) that this difference could be considered a major cause of the differential level of CPB2 production in vitro by SD isolates. Furthermore, no silent or atypical cpb2 was found in a CPB2 Western blot-negative isolate, 5422/94, suggesting that the lack of CPB2 production in 5422/94 was due to low expression of cpb2 mRNA. This received support from our observation that the recombinant plasmid carrying 5422/94 cpb2, which overexpressed cpb2 mRNA, restored CPB2 production in F4969 (a cpb2-negative isolate). Collectively, our present results suggest that CPB2 merits further study as an accessory toxin in C. perfringens-associated SD.  相似文献   

9.
Clostridium perfringens type A enterotoxin (CPE) causes the symptoms associated with C. perfringens food poisoning. To determine whether the C-terminal half of CPE contains receptor-binding activity, the 3' half of the cpe structural gene was cloned with an Escherichia coli expression vector system. E. coli lysates containing the expressed C-terminal CPE fragment (CPEfrag) were then assayed for CPE-like serologic, receptor-binding, and cytotoxic activities. CPEfrag was shown to contain an epitope located at or near the receptor-binding domain of the CPE molecule. Competitive-binding studies showed specific competition for CPE receptors between CPE and CPEfrag lysates. CPEfrag lysates did not cause cytotoxicity in Vero (African green monkey kidney) cells. However, preincubation with CPEfrag lysates specifically protected Vero cells from subsequent CPE challenge. This indicates that CPEfrag recognizes the physiologic receptor which mediates CPE cytotoxicity. Collectively, these studies indicate that the C-terminal half of CPE contains a receptor-binding domain but additional amino acid sequences appear to be required for CPE cytotoxicity.  相似文献   

10.
Clostridium perfringens enterotoxin (CPE) has been implicated as an important virulence factor inC. perfringens type A food poisoning and several non-foodborne human gastrointestinal (GI) illnesses, including antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SPOR). Recent studies have revealed genotypic differences between cpe-positive isolates originating from different disease sources, with most, or all, food poisoning isolates carrying a chomosomal cpe and most, or all, non-foodborne human GI disease isolates carrying an episomal cpe. To evaluate whether these genotypic differences cause phenotypic effects that could influence the pathogenesis of CPE-associated non-foodborne human GI illnesses, a collection of SPOR and AAD isolates has been phenotypically characterized in the current study. All cpe-positive non-foodborne disease isolates examined were found to express CPE in a sporulation-associated manner. The CPE made by these AAD and SPOR isolates was shown to have the same deduced amino acid sequence and toxicity as the classical CPE made by food poisoning isolates. All of the surveyed non-foodborne human GI disease isolates were found to classify as type AC. perfringens, since they produce alpha toxin, but not beta, iota, or epsilon toxins. Finally, no consistent clonal relationships were detected between the surveyed non-foodborne human GI disease isolates. Since, by the criteria examined, all non-foodborne human GI disease isolates examined in this study appear to be phenotypically similar to food poisoning isolates, the current results confirm that the examined AAD and SPOR isolates have enteropathogenic potential. However, given the phenotypic similarities between food poisoning, AAD, and SPOR isolates that have been demonstrated in this study, it remains unclear why the symptomology of non-foodborne human GI diseases is typically more severe and longer-lasting than that of C. perfringens type A food poisoning.  相似文献   

11.
Spices can present high microbial counts and Clostridium perfringens, Bacillus cereus, Salmonella and Shigella, among others have been isolated from spices. C. perfringens is an important pathogen agent causing, among other diseases, enteritis in humans caused by C. perfringens enterotoxin (CPE) which causes human food poisoning and enterotoxemia in domestic animals. The aims of the present work were (i) to establish the hygienic sanitary quality of some spices in San Luis, Argentina; (ii) to determine the presence of C. perfringens in these spices by means of the most probable number (MPN) and count on plate methods; (iii) to characterize the enterotoxigenic strains of C. perfringens by PCR and immunological methods such as reverse passive latex agglutination (RPLA) and (iv) to type by PCR C. perfringens strains isolated. A total of 115 samples of spices, 67 of which were purchased in local retail stores and 48 domestically collected were analysed. Total aerobe counts on tryptone glucose yeast extract agar medium of the 115 samples were between <10 and 10(6) CFU/g. The colifecal counts using Mac Conkey broth of the 115 samples were <4-10(3)CFU/g, with 28 samples (24.34%) exceeding the limit established by the Spanish Alimentary Code (10 CFU/g) while 2 samples (1.73%) had a sulfite reducing anaerobe load above standard limits. A total of 14 C. perfringens strains (12.17%) were isolated and characterized from 115 samples by the standard biochemical tests. Four of which (28.60%) turned out to be enterotoxigenic by PCR and RPLA. In order to type C. perfringens strains based on their main toxins, the 14 strains were analysed by PCR. All strains belonged to type A. All RPLA positive strains were cpe(+) by PCR. The percentage of enterotoxigenic strains was more elevated that those reported in other studies for this type of sample. These results indicate that sanitary conditions in different production stages of species must be improved to reduce health hazards. The high percentage (24.34%) of samples with colifecal values above standard limits is an indication of deficient sanitary conditions. These results suggest the need to provide legislation on the sanitary and hygienic quality of spices in our country.  相似文献   

12.
Currently there is only limited understanding of the reservoirs for Clostridium perfringens type A food poisoning. A recent survey (Y.-T. Lin and R. Labbe, Appl. Environ. Microbiol. 69:1642-1646, 2003) of non-outbreak American retail foods did not identify the presence of a single C. perfringens isolate carrying the enterotoxin gene (cpe) necessary for causing food poisoning. The present study revisited this issue, using revised methodology and food sampling strategies. In our survey, cpe-positive C. perfringens isolates were detected in approximately 1.4% of approximately 900 surveyed non-outbreak American retail foods. Interestingly, those enterotoxigenic isolates in non-outbreak foods appear indistinguishable from C. perfringens isolates known to cause food poisoning outbreaks: i.e., the enterotoxigenic retail food isolates all carry a chromosomal cpe gene, are classified as type A, and exhibit exceptional heat resistance. Collectively, these findings indicate that some American foods are contaminated, at the time of retail purchase, with C. perfringens isolates having full potential to cause food poisoning. Furthermore, demonstrating that type A isolates carrying a chromosomal cpe gene are the enterotoxigenic isolates most commonly present in foods helps to explain why these isolates (rather than type A isolates carrying a plasmid cpe gene or cpe-positive type C or D isolates) are strongly associated with food poisoning outbreaks. Finally, since type A chromosomal cpe isolates present in the surveyed raw foods exhibited strong heat resistance, it appears that exceptional heat resistance is not a survivor trait selected for by cooking but is instead an intrinsic trait possessed by many type A chromosomal cpe isolates.  相似文献   

13.
Clostridium perfringens type A isolates carrying an enterotoxin (cpe) gene are an important cause of human gastrointestinal diseases, including food poisoning, antibiotic-associated diarrhoea (AAD) and sporadic diarrhoea (SD). Using polymerase chain reaction (PCR), the current study determined that the cpb2 gene encoding the recently discovered beta2 toxin is present in <15% of food poisoning isolates, which typically carry a chromosomal cpe gene. However, >75% of AAD/SD isolates, which usually carry a plasmid cpe gene, tested cpb2(+) by PCR. Western blot analysis demonstrated that >97% of those cpb2(+)/cpe(+) AAD/SD isolates can produce CPB2. Additional PCR analyses, sequencing studies and pulsed field gel electrophoresis experiments determined that AAD/SD isolates carry cpb2 and cpe on the same plasmid when IS1151 sequences are present downstream of cpe, but cpb2 and cpe are located on different plasmids in AAD/SD isolates where IS1470-like sequences are present downstream of cpe. Those analyses also demonstrated that two different CPB2 variants (named CPB2h1 or CPB2h2) can be produced by AAD/SD isolates, dependent on whether IS1470-like or IS1151 sequences are present downstream of their cpe gene. CPB2h1 is approximately 10-fold more cytotoxic for CaCo-2 cells than is CPB2h2. Collectively, these results suggest that CPB2 could be an accessory toxin in C. perfringens enterotoxin (CPE)-associated AAD/SD.  相似文献   

14.
Clostridium perfringens type A isolates can carry the enterotoxin gene (cpe) on either their chromosome or a plasmid, but food poisoning isolates usually have a chromosomal cpe gene. This linkage between chromosomal cpe isolates and food poisoning has previously been attributed, at least in part, to better high-temperature survival of chromosomal cpe isolates than of plasmid cpe isolates. In the current study we assessed whether vegetative cells and spores of chromosomal cpe isolates also survive better than vegetative cells and spores of plasmid cpe isolates survive when the vegetative cells and spores are subjected to low temperatures. Vegetative cells of chromosomal cpe isolates exhibited about eightfold-higher decimal reduction values (D values) at 4 degrees C and threefold-higher D values at -20 degrees C than vegetative cells of plasmid cpe isolates exhibited. After 6 months of incubation at 4 degrees C and -20 degrees C, the average log reductions in viability for spores of plasmid cpe isolates were about fourfold and about threefold greater, respectively, than the average log reductions in viability for spores from chromosomal cpe isolates. C. perfringens type A isolates carrying a chromosomal cpe gene also grew significantly faster than plasmid cpe isolates grew at 25 degrees C, 37 degrees C, or 43 degrees C. In addition, chromosomal cpe isolates grew at higher maximum and lower minimum temperatures than plasmid cpe isolates grew. Collectively, these results suggest that chromosomal cpe isolates are commonly involved in food poisoning because of their greater resistance to low (as well as high) temperatures for both survival and growth. They also indicate the importance of proper low-temperature storage conditions, as well as heating, for prevention of C. perfringens type A food poisoning.  相似文献   

15.
We investigated the frequency of Clostridium perfringens in the normal fecal flora of healthy North Americans. About half of 43 subjects were colonized with C. perfringens at levels of approximately 10(6)cfu/g feces. Only type A strains were recovered. Spores sometimes outnumbered vegetative cells. Several genotypes were found. Some donors carried two genotypes, some only one. We found no alpha, beta2 or enterotoxin in the stools of any donors. Though some isolates carried toxin genes (e.g. cpe and cpb2) on plasmids, we saw no indication that healthy humans are the reservoir for the chromosomally-borne cpe recovered from cases of C. perfringens food poisoning.  相似文献   

16.
Enterotoxin-producing Clostridium perfringens type A isolates are an important cause of food poisoning and non-food-borne human gastrointestinal diseases, e.g., sporadic diarrhea (SPOR) and antibiotic-associated diarrhea (AAD). The enterotoxin gene (cpe) is usually chromosomal in food poisoning isolates but plasmid-borne in AAD/SPOR isolates. Previous studies determined that type A SPOR isolate F5603 has a plasmid (pCPF5603) carrying cpe, IS1151, and the beta2 toxin gene (cpb2), while type A SPOR isolate F4969 has a plasmid (pCPF4969) lacking cpb2 and IS1151 but carrying cpe and IS1470-like sequences. By completely sequencing these two cpe plasmids, the current study identified pCPF5603 as a 75.3-kb plasmid carrying 73 open reading frames (ORFs) and pCPF4969 as a 70.5-kb plasmid carrying 62 ORFs. These plasmids share an approximately 35-kb conserved region that potentially encodes virulence factors and carries ORFs found on the conjugative transposon Tn916. The 34.5-kb pCPF4969 variable region contains ORFs that putatively encode two bacteriocins and a two-component regulator similar to VirR/VirS, while the approximately 43.6-kb pCPF5603 variable region contains a functional cpb2 gene and several metabolic genes. Diversity studies indicated that other type A plasmid cpe+/IS1151 SPOR/AAD isolates carry a pCPF5603-like plasmid, while other type A plasmid cpe+/IS1470-like SPOR/AAD isolates carry a pCPF4969-like plasmid. Tn916-related ORFs similar to those in pCPF4969 (known to transfer conjugatively) were detected in the cpe plasmids of other type A SPOR/AAD isolates, as well as in representative C. perfringens type B to D isolates carrying other virulence plasmids, possibly suggesting that most or all C. perfringens virulence plasmids transfer conjugatively.  相似文献   

17.
AIMS: The aim of the study was to determine the presence of genes coding for alpha (cpa), beta (cpb), epsilon (etx), iota (iA) and enterotoxin (cpe) from Clostridium perfringens broiler chicken isolates, using multiplex PCR assay established in the study. METHODS AND RESULTS: The multiplex PCR assay was shown to be specific when tested with 10 C. perfringens strains representing different toxin types, and 15 strains of other bacterial species. All 118 broiler chicken C. perfringens isolates were shown to carry the cpa gene but not cpb, etx, iap or cpe genes, signifying that all isolates represented type A and were cpe-negative. CONCLUSIONS: The assay established in the study enables the simultaneous detection of the major toxin genes and the cpe gene from C. perfringens isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study offers a new primer pair for detecting cpa, combined with a multiplex PCR assay. In addition, the study provides data of the presence of different toxin genes in C. perfringens isolates obtained from broiler chickens.  相似文献   

18.
Clostridium perfringens continues to be a common cause of food-borne disease. It produces an enterotoxin (CPE) which is released upon lysis of the vegetative cell during sporulation in the intestinal tract. Catering premises with insufficient cooling and reheating devices often seem to be the cause of outbreaks of C. perfringens food poisoning. Typing of C. perfringens is of great importance for investigating sources of food poisoning cases and for studying the epidemiology of this microorganism. This report describes the examination of 155 C. perfringens isolates by molecular methods. Isolates were taken from 10 food poisoning outbreaks and cases (n = 34, food and fecal isolates) and from meat and fish pastes (n = 121). Isolates were characterized by plasmid profiling, ribotyping, and/or macrorestriction analysis by pulsed-field gel electrophoresis (PFGE). Results show that all three methods are suitable for classifying C. perfringens isolates below the species level. Ribopatterns and PFGE patterns can be interpreted more easily than plasmid profiling results and can be recommended for contamination studies and epidemiologic investigation of food poisonings associated with C. perfringens.  相似文献   

19.
An enterotoxin (cpe) plasmid was cured from a Clostridium perfringens non-food-borne gastrointestinal disease (NFBGID) isolate, and the heat resistance levels of wild-type, cpe knockout, and cpe plasmid-cured strains were compared. Our results demonstrated that (i) wild-type cpe has no influence in mediating high-level heat resistance in C. perfringens and (ii) the cpe plasmid does not confer heat sensitivity on NFBGID isolates.  相似文献   

20.
From 1975 to 1999, Clostridium perfringens caused 238 food-borne disease outbreaks in Finland, which is 20% of all such reported outbreaks during these years. The fact that C. perfringens is commonly found in human and animal stools and that it is also widespread in the environment is a disadvantage when one is searching for the specific cause of a food-borne infection by traditional methods. In order to strengthen the evidence-based diagnostics of food poisonings suspected to be caused by C. perfringens, we retrospectively investigated 47 C. perfringens isolates by PCR for the cpe gene, which encodes enterotoxin; by reversed passive latex agglutination to detect the enterotoxin production; and by pulsed-field gel electrophoresis (PFGE) to compare their genotypes after restriction of DNA by the enzymes SmaI and ApaI. The strains were isolated during 1984 to 1999 from nine food-borne outbreaks of disease originally reported as having been caused by C. perfringens. In seven of the nine outbreaks our results supported the fact that the cause was C. perfringens. Our findings emphasize the importance of a more detailed characterization of C. perfringens isolates than mere identification to the species level in order to verify the cause of an outbreak. Also, to increase the probability of finding the significant cpe-positive C. perfringens strains, it is very important to isolate and investigate more than one colony from the fecal culture of a patient and screen all these isolates for the presence of the cpe gene before further laboratory work is done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号