首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six persistently feline leukemia virus (FeLV)-infected pet cats were treated by extracorporeal immunoadsorption with Staphylococcus aureus Cowan I (SAC) to remove circulating immune complexes and immunoglobulin G (IgG) from plasma. In three of these cats, the FeLV infection was eliminated, whereas in the other three cats the infection persisted. The amounts of peripheral blood leukocyte (PBL)-associated FeLV, soluble FeLV envelope glycoprotein (gp70) antigens in serum, and FeLV-gp70-specific antibodies were determined in all six cats at different times during treatment. In all of the cats, there were fluctuations in the amounts of FeLV-positive PBL and of serum antigen related to FeLV gp70. The one serologic parameter that always correlated with complete clearance of FeLV in the responder cats was the development of free antibodies to gp70. These results suggest that extracorporeal immunoadsorption treatment stimulates an existing low level antibody response to FeLV in some cats, and that these antibodies mediate the clearance of FeLV. The results also suggest that determination of antibody titer to FeLV is of value in predicting the outcome of extracorporeal immunoadsorption treatments as well as when treatment may be terminated.  相似文献   

2.
We describe the molecular cloning of an anemogenic feline leukemia virus (FeLV), FeLV-C-Sarma, from the productively infected human rhabdomyosarcoma cell line RD(FeLV-C-S). Molecularly cloned FeLV-C-S proviral DNA yielded infectious virus (mcFeLV-C-S) after transfection of mammalian cells, and virus interference studies using transfection-derived virus demonstrated that our clone encodes FeLV belonging to the C subgroup. mcFeLV-C-S did not induce viremia in eight 8-week-old outbred specific-pathogen-free (SPF) cats. It did, however, induce viremia and a rapid, fatal aplastic anemia due to profound suppression of erythroid stem cell growth in 9 of 10 inoculated newborn, SPF cats within 3 to 8 weeks (21 to 58 days) postinoculation. Thus, the genome of mcFeLV-C-S encodes the determinants responsible for the genetically dominant induction of irreversible erythroid aplasia in outbred cats. A potential clue to the pathogenic determinants of this virus comes from previous work indicating that all FeLV isolates belonging to the C subgroup, an envelop-gene-determined property, and only those belonging to the C subgroup, are potent, consistent inducers of aplastic anemia in cats. To approach the molecular mechanism underlying the induction of this disease, we first determined the nucleotide sequence of the envelope genes and 3' long terminal repeat of FeLV-C-S and compared it with that of FeLV-B-Gardner-Arnstein (mcFeLV-B-GA), a subgroup-B feline leukemia virus that consistently induces a different disease, myelodysplastic anemia, in neonatal SPF cats. Our analysis revealed that the p15E genes and long terminal repeats of the two FeLV strains are highly homologous, whereas there are major differences in the gp70 proteins, including five regions of significant amino acid differences and apparent sequence substitution. Some of these changes are also reflected in predicted glycosylation sites; the gp70 protein of FeLV-B-GA has 11 potential glycosylation sites, only 8 of which are present in FeLV-C-S.  相似文献   

3.
We have previously characterized seven unique antigenic epitopes on the two envelope glycoproteins of the Venezuelan equine encephalomyelitis (VEE) virus vaccine strain, TC-83, by using monoclonal antibodies. The in vitro function of virus neutralization was primarily associated with one epitope on the gp56 (gp56c). To determine which epitopes were important in protecting animals from VEE infection, purified monoclonal antibodies were inoculated i.v. into 3-wk-old Swiss mice. Twenty-four hours later these animals were challenged i.p. with 100 IPLD50 of virulent VEE virus (Trinidad donkey). High-avidity anti-gp56c, anti-gp50b, anti-gp50c, and anti-gp50d monoclonal antibodies protected animals from virus challenge. Rabbit antisera to the gp56 and the gp50 glycoproteins were also effective in protecting mice from challenge with virulent VEE virus. Less antibody was needed to protect animals if the antibody was directed against the critical neutralization site. Less avid antibodies to the gp56c and gp50b epitopes demonstrated little or no protection in vivo. Protection, therefore, appeared to be a function of the passive antibody's specificity, avidity, and ability to bind to virion antigenic determinants topologically proximal to the critical neutralization site.  相似文献   

4.
IgG and circulating IgG immune complexes (CIC) were purified from plasma of three pet cats persistently infected with feline leukemia virus (FeLV) by adsorption to, and elution from, Staphylococcus aureus Cowan I. CIC were then separated from free IgG by sucrose gradient ultracentrifugation and were analyzed for the presence of FeLV structural proteins and corresponding specific antibodies. Radioimmunoprecipitation analysis indicated that FeLV envelope (gp70) and major core (p30) proteins, along with cat IgG heavy and light chains, were present in the CIC from all three cats. Further analysis of the CIC from one of the cats also revealed the presence of FeLV core proteins p15 and p12. IgG purified from isolated CIC was also shown to bind specifically to purified FeLV gp70, p30, and p15. These data provide direct evidence for FeLV-specific CIC in the plasma of persistently viremic pet cats, and suggest these animals are immunologically response to the virus even though free antibodies against the major structural proteins cannot be demonstrated in standard assays.  相似文献   

5.
We synthesized 27 synthetic peptides corresponding to approximately 80% of the sequences encoding gp70 and p15E of Gardner-Arnstein feline leukemia virus (FeLV) subtype B. The peptides were conjugated to keyhole limpet hemocyanin and injected into rabbits for preparation of antipeptide antisera. These sera were then tested for their ability to neutralize a broad range of FeLV isolates in vitro. Eight peptides elicited neutralizing responses against subtype B isolates. Five of these peptides corresponded to sequences of gp70 and three to p15E. The ability of these antipeptide antisera to neutralize FeLV subtypes A and C varied. In certain circumstances, failure to neutralize a particular isolate corresponded to sequence changes within the corresponding peptide region. However, four antibodies which preferentially neutralized the subtype B viruses were directed to epitopes in common with Sarma subtype C virus. These results suggest that distal changes in certain subtypes (possibly glycosylation differences) alter the availability of certain epitopes in one virus isolate relative to another. We prepared a "nest" of overlapping peptides corresponding to one of the neutralizing regions of gp70 and performed slot blot analyses with both antipeptide antibodies and a monoclonal antibody which recognized this epitope. We were able to define a five-amino-acid sequence required for reactivity. Comparisons were made between an anti-synthetic peptide antibody and a monoclonal antibody reactive to this epitope for the ability to bind both peptide and virus, as well as to neutralize virus in vitro. Both the anti-synthetic peptide and the monoclonal antibodies bound peptide and virus to high titers. However, the monoclonal antibody had a 4-fold-higher titer against virus and a 10-fold-higher neutralizing titer than did the anti-synthetic peptide antibody. Competition assays were performed with these two antibodies adjusted to equivalent antivirus titers against intact virions affixed to tissue culture plates. The monoclonal antibody had a greater ability to compete for virus binding, which suggested that differences in neutralizing titers may relate to the relative affinities of these antisera for the peptide conformation in the native structure.  相似文献   

6.
We constructed recombinant feline herpesviruses (FHVs) expressing the envelope (env) and gag genes of feline leukemia virus (FeLV). Expression cassettes, utilizing the human cytomegalovirus immediate-early promoter, were inserted within the thymidine kinase gene of FHV. The FeLV env glycoprotein expressed by recombinant FHV was processed and transported to the cell surface much as in FeLV infection, with the exception that proteolytic processing to yield the mature gp70 and p15E proteins was less efficient in the context of herpesvirus infection. Glycosylation of the env protein was not affected; modification continued in the absence of efficient proteolytic processing to generate terminally glycosylated gp85 and gp70 proteins. A recombinant FHV containing the FeLV gag and protease genes expressed both gag and gag-protease precursor proteins. Functional protease was produced which mediated the proteolytic maturation of the FeLV gag proteins as in authentic FeLV infection. Use of these recombinant FHVs as live-virus vaccines may provide insight as to the role of specific retroviral proteins in protective immunity. The current use of conventional attenuated FHV vaccines speaks to the wider potential of recombinant FHVs for vaccination in cats.  相似文献   

7.
Two ALVAC (canarypox virus)-based recombinant viruses expressing the feline leukemia virus (FeLV) subgroup A env and gag genes were assessed for their protective efficacy in cats. Both recombinant viruses contained the entire gag gene. ALVAC-FL also expressed the entire envelope glycoprotein, while ALVAC-FL(dl IS) expressed an env-specific gene product deleted of the putative immunosuppressive region. Although only 50% of the cats vaccinated with ALVAC-FL(dl IS) were protected against persistent viremia after oronasal exposure to a homologous FeLV isolate, all cats administered ALVAC-FL resisted the challenge exposure. Significantly, protection was afforded in the absence of detectable FeLV-neutralizing antibodies. These results represent the first effective vaccination of cats against FeLV with a poxvirus-based recombinant vector and have implications that are relevant not only to FeLV vaccine development but also to developing vaccines against other retroviruses, including human immunodeficiency virus.  相似文献   

8.
Nine murine monoclonal antibodies (MAb) to the envelope proteins of feline leukemia virus (FeLV) are described. Eight MAb are directed to epitopes of the same molecular species of gp70 and the other MAb is directed to the p15E moiety. Six of the gp70 epitopes are discrete; two are closely associated or overlapping. Four anti-gp70 MAb (2 of IgG2A and 2 of IgG2B subclasses) were directly cytotoxic for FeLV-producer lymphoma cells with cat or with rabbit complement (C). Another MAb (IgG2B), which was not cytotoxic alone, specifically and synergistically increased the cytotoxic effects of both IgG2A MAb. Cytotoxic anti-gp70 MAb also had virus-neutralizing capacity; one MAb recognized a determinant common to all FeLV subgroups (A, B, and C), the others recognized gp70 epitopes not present on subgroup A but common to both B and C subgroups. Competitive inhibition of MAb binding was employed to map spatial distributions of the epitopes, and the results fitted a molecule shaped as an incomplete loop. According to the model, epitopes involved with cytotoxic and virus neutralizing antibody functions were closely associated; the region involved is approximately in the center of the molecule, and it contains epitopes that are variably expressed among individual isolates of FeLV derived from different cat lymphoma cell lines.  相似文献   

9.
Endogenous feline leukemia virus (FeLV)-related sequences (enFeLV) are a family of proviral elements found in domestic cats and their close relatives. These elements can recombine with exogenous, infectious FeLVs of subgroup A (FeLV-A), giving rise to host range variants of FeLV-B. We found that a subset of defective enFeLV proviruses is highly expressed in lymphoma cell lines and in a variety of primary tissues, including lymphoid tissues from healthy specific-pathogen-free cats. At least two RNA species were detected, a 4.5-kb RNA containing gag, env, and long terminal repeat sequences and a 2-kb RNA containing env and long terminal repeat sequences. Cloning of enFeLV cDNA from two FeLV-free lymphoma cell lines (3201 and MCC) revealed a long open reading frame (ORF) encoding a truncated env gene product corresponding to the N-terminal portion of gp70env. Interestingly, all of three natural FeLV-B isolates include 3' env sequences which are missing from the highly transcribed subset and hence must be derived from other enFeLV elements. The enFeLV env ORF cDNA clones were closely similar to a previously characterized enFeLV provirus, CFE-16, but were polymorphic at a site corresponding to an exogenous FeLV neutralization epitope. Site-specific antiserum raised to a C-terminal 30-amino-acid peptide of the enFeLV env ORF detected an intracellular product of 35 kDa which was also shed from cells in stable form. Expression of the 35-kDa protein correlated with enFeLV RNA levels and was negatively correlated with susceptibility to infection with FeLV-B. Cell culture supernatant containing the 35-kDa protein specifically blocked infection of permissive fibroblast cells with FeLV-B isolates. We suggest that the truncated env protein mediates resistance by receptor blockade and that this form of enFeLV expression mediates the natural resistance of cats to infection with FeLV-B in the absence of FeLV-A.  相似文献   

10.
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (相似文献   

11.
The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M) and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application.  相似文献   

12.
Multiple Ag peptide (MAP) system without the use of a protein carrier was used as a vaccine model in three species of animals. Synthetic peptides from the V3 region of the gp120 of IIIB, RF and MN HIV-1 isolates were used as the Ag. MAP consisting of various chain lengths, from 11 to 24 residues, were prepared in a monoepitope configuration containing four repeats of each individual peptide. In parallel, they were synthesized in a diepitope configuration adding at the carboxyl-terminus of the V3 peptides a conserved sequence, known to be a Th cell epitope of gp120. The antibody response elicited by the monoepitope constructs was species-dependent. Rabbits produced immunity against all nine peptides, whereas mice were strongly reactive mainly to the longest sequence of the IIIB isolate. The immune response of guinea pigs was intermediate to those of rabbits and mice. Diepitope MAPs were immunogenic in all three species and elicited significantly higher titers than those raised by the immunization with the monoepitope MAPs. The response was type specific; the high-titered antibodies were reactive mostly against the isolate from which the peptides were derived, with a small cross-reactivity in ELISA between IIIB and RF strains. The dominant antigenic site of the B cell epitope, IIIB sequence, was located at the amino and central part of the MAP and a sequence overlapping the putative V3 reverse-turn was particularly reactive with the raised antibodies. Moreover, sera from the immunized animals inhibited virus-dependent cell fusion. These results show that MAP, with a chemically defined structure and without the use of a protein carrier, can be potentially useful for the design of synthetic HIV-1 vaccine candidates.  相似文献   

13.
Nucleotide sequence analysis of the env gene of two different endogenous feline leukemia virus (FeLV) loci, CFE-6 and CFE-16, of domestic cats revealed the following characteristics. (i) Both proviruses contain an open reading frame in the env region; (ii) whereas the full complement of the exogenous FeLV env is generally present in CFE-6 DNA, it is truncated in CFE-16 DNA such that the 5' half of the gp70 domain and the untranslated region 3' to the p15E domain have been fused by an internal deletion, resulting in loss of the C-terminal half of the gp70- and all of the p15E-coding sequences; (iii) endogenous env is highly homologous to large sequence domains conserved in all three exogenous FeLV subgroups (A, B, and C) but is similar to FeLV-B sequence domains in the variable regions detected in these viruses; and (iv) there are four other sequence domains, one residing at the C terminus of gp70 and three scattered in p15E, which are unique for the endogenous env, thereby distinguishing it from the FeLV-B gene.  相似文献   

14.
A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.  相似文献   

15.
A serological survey was carried out to examine the presence of antibodies against feline leukemia virus (FeLV) and feline oncornavirus-associated cell membrane antigen (FOCMA) in 208 cat sera collected at Teikyo University School of Medicine. Seven cats (3.4%) were positive for FeLV antibodies by enzyme-linked immunosorbent assay whereas no cat was positive for FOCMA antibody by indirect membrane immunofluorescent test. Anemia, leukemia and/or lymphoma formation were not observed in these FeLV antibody-positive cats. But among these seven cats, three were positive for toxoplasma antibodies. One of them was also positive for Chlamydia psittaci antibody and it died in pneumonia. Among the four toxoplasma antibody negative cats, one was died in eosinophilic granuloma. Furthermore, two of three cats, which were used for experiments, had cold and took therapy.  相似文献   

16.
A human monoclonal antibody, 41-7 [immunoglobulin G1(kappa)], directed against the transmembrane glycoprotein gp41 of the human immunodeficiency virus type 1 (HIV-1) has been produced by direct fusion of lymph node cells from an HIV-1-infected individual with a human B-lymphoblastoid cell line. The minimal essential epitope for 41-7 was mapped to a conserved seven-amino acid sequence, N-CSGKLIC-C, located within the N-terminal part of gp41. Antibodies blocking the binding of 41-7 could be detected in the serum of all HIV-1-infected individuals tested, irrespective of the stage of the infection. The epitope is located externally to the plasma membrane, and it is accessible to antibody in the native conformation of the glycoprotein. Despite this, no neutralizing activity of 41-7 could be demonstrated in vitro. These data indicate, directly and indirectly, that this immunodominant epitope on gp41, although exposed on the viral surface, elicits antibodies lacking antiviral activity and, hence, should be avoided in future vaccine candidates.  相似文献   

17.
The external surface glycoprotein (SU) of feline leukemia virus (FeLV) contains sites which define the viral subgroup and induce virus-neutralizing antibodies. The subgroup phenotypic determinants have been located to a small variable region, VR1, towards the amino terminus of SU. The sites which function as neutralizing epitopes in vivo are unknown. Recombinant SU proteins were produced by using baculoviruses that contained sequences encoding the SUs of FeLV subgroup A (FeLV-A), FeLV-C, and two chimeric FeLVs (FeLV-215 and FeLV-VC) in which the VR1 domain of FeLV-A had been replaced by the corresponding regions of FeLV-C isolates. The recombinant glycoproteins, designated Bgp70-A, -C, -215, and -VC, respectively, were similar to their wild-type counterparts in several immunoblots and inhibited infection of susceptible cell lines in a subgroup-specific manner. Thus, Bgp70-A interfered with infection by FeLV-A, whereas Bgp70-C, -VC, and -215 did not. Conversely, Bgp70-C, -VC, and -215 blocked infection with FeLV-C, while Bgp70-A had no effect. These results indicate that the site on SU which binds to the FeLV cell surface receptor was preserved in the recombinant glycoproteins. It was also found that the recombinant proteins were able to bind naturally occurring neutralizing antibodies. Bgp70-A, -VC, and -215 interfered with the action of anti-FeLV-A neutralizing antibodies, whereas Bgp70-C did not. Furthermore, Bgp70-C interfered with the action of anti-FeLV-C neutralizing antibodies, while the other proteins did not. These results indicate that the neutralizing epitope(s) of FeLV SU lies outside the subgroup-determining VR1 domain.  相似文献   

18.
Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.  相似文献   

19.
Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV) were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP), polymerase basic protein 1 (PB1) and matrix protein 1 (M1). C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.  相似文献   

20.
ObjectiveThe present study aimed to screen and find alkyl hydroperoxide reductase (AhpC) B cell dominant epitope of Campylobacter jejuni (C. jejuni).Materials and methodsBio-informatic algorithms were used to predict B cell epitopes of AhpC. The AhpC protein and chemically synthesized antigenic epitopes of C. jejuni were considered as antigens, and the AhpC antibody was used as the primary antibody, ELISA and dot blot were used to analyze and screen the dominant epitope. The specific IgG of mice serum and IL-4 in splenocyte culture supernatant were detected by ELISA. The protective efficacy was evaluated by animal disease index and tissue histopathological staining of the jejunum.ResultsSeven epitopes of AhpC were predicted, one epitope (AhpC4–16) was found to recognize the antibodies of AhpC and had strong antigenicity by ELISA and dot blot analysis. In epitope AhpC4–16 immunized mice, specific IgG of serum and IL-4 in splenocyte culture supernatant were significantly higher. The illness index decreased significantly, the protective rate was 66.67%. Histopathology displayed that the jejunum morphology was better than the control group.ConclusionsThese findings suggested that epitope AhpC4–16 showed effective protective role against C. jejuni and is a candidate epitope of vaccine against this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号