首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The hemorrhagic, procoagulant, anticoagulant, protease, arginine ester hydrolase, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, phospholipase A and L-amino acid oxidase activities of 50 venom samples from 20 taxa of rattlesnake (genera Crotalus and Sistrurus) were examined. 2. The results show that notwithstanding individual variations in the biological activities of Crotalus venoms and the wide ranges of certain biological activities observed, there are some common characteristics at the genus and species levels. 3. The differences in biological activities of the venoms compared can be used for differentiation of the species. Particularly useful for this purpose are the thrombin-like enzyme, protease, arginine ester hydrolase, hemorrhagic and phospholipase A activities and kaolin-cephalin clotting time measurements.  相似文献   

2.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, hyaluronidase, alkaline phosphomonoesterase, 5'-nucleotidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 30 samples of venoms from nine species (12 taxa) of the old world vipers (Subfamily Viperinae) including snakes from the genera Bitis, Causus, Cerastes, Echis, Eristicophis and Pseudocerastes, were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. Examination of the biological properties of the venoms of the Viperinae tested indicates the presence of common venom biological characteristics at the various phylogenic levels. 3. Venoms of most species of the Viperinae examined exhibited characteristic biological properties at the species level, and this allows the differentiation of the Viperinae species by differences in their biological properties. 4. Particularly useful for this purpose, are the effects of venom on kaolin-cephalin clotting time of platelet poor rabbit plasma and the Sephadex G-75 gel filtration pattern and arginine ester hydrolase activity of the venom.  相似文献   

3.
1. The lethalities, anticoagulant effects, hermorrhagic, thrombin-like enzyme, hyaluronidase, protease, arginine ester hydrolase, 5'-nucleotidase, L-amino acid oxidase, alkaline phosphomonoesterase, phosphodiesterase and phospholipase A activities of twenty-three samples of venoms from twelve species of Asian lance-headed pit vipers (genus Trimeresurus) were examined. 2. The results indicate that notwithstanding individual variations in venom properties, the differences in biological properties of the Trimeresurus venoms can be used for the differentiation of venoms from different species of Trimeresurus. 3. The results also suggest that differences in the biological properties of snake venoms are useful parameters in the classification of snake species. 4. Our results indicate that venoms from the species T. okinavensis exhibited biological properties markedly different from other Trimeresurus venoms examined. This observation supports the recently proposed reclassification of T. okinavensis as a member of the genus Ovophis, rather than the genus Trimeresurus.  相似文献   

4.
A comparative study of the biological properties of some sea snake venoms.   总被引:3,自引:0,他引:3  
1. The protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, procoagulant, anticoagulant and hemorrhagic activities of ten samples of venoms from seven taxa of sea snakes were examined. 2. The results show that venoms of sea snakes of both subfamilies of Hydrophiinae and Laticaudinae are characterized by a very low level of enzymatic activities, except phospholipase A activity and, for some species, hyaluronidase activity. 3. Because of the low levels of enzymatic activities and the total lack of procoagulant and hemorrhagic activities, venom biological properties are not useful for the differentiation of species of sea snakes. Nevertheless, the unusually low levels of enzymatic activities of sea snake venoms may be used to distinguish sea snake venoms from other elapid or viperid venoms.  相似文献   

5.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, hyaluronidase, alkaline phosphomonoesterase, 5'-nucleotidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms of 13 taxa of Vipera were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. The results indicate the presence of certain common characteristics among the venoms, particularly if V. russelli is excluded from the comparison. The results also support the recently proposed reassignment of V. russelli to a separate genus. 3. The data show that information on venom biological properties can be used for differentiation of venoms of many species of Vipera. Particularly useful for this purpose are the protease, phosphodiesterase, phospholipase A and the procoagulant activities and the Sephadex G-75 gel filtration patterns of the venoms.  相似文献   

6.
1. The biological properties of twelve samples of venoms from all four species of Dendroaspis (mamba) were investigated. 2. Dendroaspis venoms generally exhibited very low levels of protease, phosphodiesterase and alkaline phosphomonoesterase; low to moderately low level of 5'-nucleotidase and very high hyaluronidase activities, but were devoid of L-amino acid oxidase, phospholipase A, acetylcholinesterase and arginine ester hydrolase activities. The unusual feature in venom enzyme content can be used to distinguish Dendroaspis venoms from other snake venoms. 3. All Dendroaspis venoms did not exhibit hemorrhagic or procoagulant activity. Some Dendroaspis venoms, however, exhibited strong anticoagulant activity. The intravenous median lethal dose of the venoms ranged from 0.5 microgram/g mouse to 4.2 micrograms/g mouse. 4. Venom biological activities are not very useful for the differentiation of the Dendroaspis species. The four Dendroaspis venoms, however, can be differentiated by their venom SDS-polyacrylamide gel electrophoretic patterns.  相似文献   

7.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms from 13 species of Bothrops were determined, and the Sephadex G-75 gel filtration patterns for some of the venoms also examined. 2. The results show that while there are considerable individual variations in the biological activities of many of the Bothrops venoms tested, there are some common characteristics at the genus and species levels. 3. The differences in the biological properties of the Bothrops venoms tested can be used for the differentiation of most Bothrops species examined.  相似文献   

8.
In investigations aimed at characterizing snake venom blood clot-dissolving enzymes, we have developed a rapid two-step high-performance chromatography method for the isolation of these fibrinolytic enzymes from the venoms of Agkistrodon contortrix contortrix and Agkistrodon piscivorus conanti. The first step consisted of hydrophobic interaction chromatography on a propyl-aspartamide column. Fractions containing the fibrinolytic activity were then concentrated and applied to a hydroxylapatite column. The resulting preparation, assessed for purity by reverse-phase chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was homogeneous. The molecular weight of both venom fibrinolytic enzymes was approximately 23,000 and amino acid analysis, immunological cross-reaction, cyanogen bromide, and tryptic digestion indicate a significant degree of structural similarity. However, the general proteolytic activity of the A. p. conanti venom enzyme was significantly lower than the corresponding activity of the A. c. contortrix venom, whereas their fibrinolytic activities were quite similar.  相似文献   

9.
1. The hemorrhagic, procoagulant, anticoagulant, protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, arginine ester hydrolase, phospholipase A, 5'-nucleotidase and hyaluronidase activities of 39 samples of venoms from 13 species (15 taxa) of Australian elapids were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. The results indicate that Australian elapid venoms can be divided into two groups: procoagulant Australian venoms (including N. scutatus, N. ater, O. scutellatus, O. microlepidotus, P. porphyriacus, T. carinatus, H. stephensii and P. textilis) and non-procoagulant Australian venoms (including A. superbus, P. colletti, P. australis, P. guttatus and A. antarcticus). 3. The non-procoagulant Australian venoms exhibited biological properties similar to other elapid venoms, while the procoagulant Australian venoms exhibited some properties characteristic of viperid venoms. 4. The data show that information on venom biological properties can be used for differentiation of many species of Australian elapids. 5. Particularly useful for this purpose are the hyaluronidase, alkaline phosphomonoesterase, acetylcholinesterase, and the procoagulant activities and the Sephadex G-75 gel filtration patterns of the venoms.  相似文献   

10.
1. The enzymatic, hemorrhagic, procoagulant and anticoagulant activities of venoms of some animals including snakes, lizards, toads, scorpions, spider, wasps, bees and ants were compared.2. Snake venom was the richest source of enzymes among the animal venoms. Most other animal venoms were devoid of phosphodiesterase, l-amino acid oxidase, alkaline phosphomonoesterase and acetylcholinesterase activities and only a few exhibited arginine ester hydrolase activity. These venoms, however, exhibited wide ranges of protease, 5'-nucleotidase and hyaluronidase activities. Most of the animal venoms examined exhibited some phospholipase A activity.3. Other than snake venoms, only venoms of the toad Bufo calamita and the lizards were hemorrhagic, and only venoms of the social wasps, social bees and harvester ant exhibited strong anticoagulant activity. Procoagulant activity occurs only in snake venoms.  相似文献   

11.
In separate experiments, antibodies to plasminogen, factor X and protein C were applied to microtitre trays as commonly used in enzyme-linked immunoassays. After incubation with dilute normal human plasma as a source of the corresponding proenzyme antigen, the wells were exposed to dilutions of various snake venoms. After thorough washing, the microtitre tray wells were tested overnight with chromogenic tripeptide substrates known to be relatively specific for the activated forms of the above factors, i.e., plasmin, factor Xa and activated protein C. The immunochromometric assay described detected two new activators of protein C in Agkistrodon piscivorus and Agkistrodon contortrix venoms and a new factor X activator in Agkistrodon rhodostoma venom. Gel filtration of the latter venom indicated that the factor X activator eluted with high molecular weight, was clearly distinct from the peak fibrinogen clotting activity (Ancrod) and appeared to have no procoagulant activity. Although several Bothrops venoms appeared to contain plasminogen activator by this technique, the observed strong chromogenic activity was observed in microtitre wells independently of plasminogen and represented nonspecific amidase activity.  相似文献   

12.
A basic monomeric phospholipase A2 from the venom of the American water moccasin, Agkistrodon piscivorus piscivorus, undergoes Ca2+-dependent, autocatalytic acylation during the course of hydrolysis of both model and natural phospholipid substrates. Acylation occurs at 2 lysine residues, Lys-7 and Lys-10, in the NH2-terminal alpha-helical segment of the enzyme, and when both positions are fully derivatized, the stable bisacylphospholipase A2 becomes a dimer in solution. The acylated enzyme is fully activated toward monomolecular layers of lecithins. Similar studies applied to the monomeric phospholipases A2 from porcine pancreas and from the venom of Agkistrodon contortrix contortrix also showed irreversible activation of the enzymes by substrate with the same kinetic consequences and formation of dimers. Acylation thus enables these enzymes to overcome the lag period observed under such conditions with native monomeric phospholipases, a phenomenon referred to as interfacial activation. Activation of the enzyme by acylation potentiates the phospholipase for interfacial recognition via formation of a dimeric enzyme. The naturally occurring phospholipase A2 dimer from Crotalus atrox venom displays no lag in the hydrolysis of lecithin monolayers nor does it undergo substrate level acylation. These facts support our proposal that dimerization concomitant with acylation is responsible for the large rate enhancements seen in the hydrolysis of aggregated phospholipids by monomeric phospholipases. Our findings demonstrate for the first time a chemical mechanism for interfacial activation of and interfacial recognition by phospholipases A2.  相似文献   

13.
1. Commercially available preparations of venoms of three subspecies of copperhead snake (Agkistrodon contortrix) were compared as to toxicity, enzymatic activities, effect on a nerve-muscle preparation and capacity to induce clotting of a fibrinogen solution or plasma. 2. Northern copperhead venom contained apparent neurotoxic activities that were not present in broadbanded copperhead venom and only partially present in southern copperhead venom. 3. Procoagulant activity was demonstrated in whole northern copperhead venom in the absence of exogenous calcium. Procoagulant activity was present in certain isolated fractions of southern and broadbanded copperhead venoms, but was not apparent in the whole venoms. 4. Differences were noted in the levels of enzyme activities and electrophoretic patterns of the three venoms.  相似文献   

14.
A basic, dimeric myotoxic protein, myotoxin II, purified from Bothrops asper venom has a similar molecular weight and is immunologically cross-reactive with antibodies raised to previously isolated B. asper phospholipases A2, except that it shows only 0.1% of the phospholipase activity against L-alpha-phosphatidylcholine in the presence of Triton X-100. Its 121 amino acid sequence, determined by automated Edman degradation, clearly identifies it as a Lys-49 phospholipase A2. Key amino acid differences between myotoxin II and phospholipase active proteins in the Ca2(+)-binding loop region, include Lys for Asp-49, Asn for Tyr-28, and Leu for Gly-32. The latter substitution has not previously been seen in Lys-49 proteins. Other substitutions near the amino terminus (Leu for Phe-5 and Gln for several different amino acids at position 11) may prove useful for identifying other Lys-49 proteins in viperid and crotalid venoms. Myotoxin II shows greater sequence identity with other Lys-49 proteins from different snake venoms (Agkistrodon piscivorus piscivorus, Bothrops atrox, and Trimeresurus flavoviridis) than with another phospholipase A2 active Asp-49 molecule isolated from the same B. asper venom. This work demonstrates that phospholipase activity per se, is not required in phospholipase molecules for either myotoxicity or edema inducing activities.  相似文献   

15.
1. The L-amino acid oxidase, hyaluronidase, alkaline phosphomonoesterase, protease, phosphodiesterase, acetylcholinesterase, phospholipase A and 5'-nucleotidase activities of 47 samples of venoms from all the six species of cobra (Naja), including five subspecies of Naja naja, were examined. 2. The results demonstrated interspecific differences in the venom contents of phospholipase A, acetylcholinesterase, hyaluronidase and phosphodiesterase. These differences in venom enzyme contents can be used for the differentiation of species of the genus Naja. 3. Thus, our results revealed a correlation between the enzyme composition of venom and the taxonomic status of the snake at the species level for the genus Naja.  相似文献   

16.
Cysteine-rich secretory proteins (CRISPs) are found in epididymis and granules of mammals, and they are thought to function in sperm maturation and in the immune system. Recently, we isolated and obtained clones for novel snake venom proteins that are classified as CRISP family proteins. To elucidate the distribution of snake venom CRISP family proteins, we evaluated a wide range of venoms for immuno-cross-reactivity. Then we isolated, characterized, and cloned genes for three novel CRISP family proteins (piscivorin, ophanin, and catrin) from the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus), king cobra (Ophiophagus hannah), and western diamondback rattlesnake (Crotalus atrox). Our results show the wide distribution of snake venom CRISP family proteins among Viperidae and Elapidae from different continents, indicating that CRISP family proteins compose a new group of snake venom proteins.  相似文献   

17.
1. The intravenous median lethal doses (LD50), protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyauronidase and anticoagulant activities of fourteen samples of venoms from the four common species of krait (Bungarus caeruleus, Bungarus candidus, Bungarus multicinctus and Bungarus fasciatus) were examined. 2. The results indicate that even though there are individual variations in the biological properties of the krait venoms, interspecific differences in the properties can be used for differentiation of the venoms from the four species of Bungarus. Particularly useful for this purpose are the LD50's and the contents of 5'-nucleotidase and hyaluronidase of the venoms.  相似文献   

18.
Protein C activation initiated by the thrombin-thrombomodulin complex forms the major physiological anticoagulant pathway. Agkistrodon contortrix contortrix protein C activator, a glycosylated single-chain serine proteinase, activates protein C without relying on thrombomodulin. The crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator determined at 1.65 and 1.54 A resolutions, respectively, indicate the pivotal roles played by the positively charged belt and the strategic positioning of the three carbohydrate moieties surrounding the catalytic site in protein C recognition, binding, and activation. Structural changes in the benzamidine-inhibited enzyme suggest a probable function in allosteric regulation for the anion-binding site located in the C-terminal extension, which is fully conserved in snake venom serine proteinases, that preferentially binds Cl(1-) instead of SO(4)(2-).  相似文献   

19.
A thrombin-like enzyme (termed albolabrase) was isolated in purified form from the venom of Cryptelytrops albolabris (white-lipped tree viper) using high performance anion ion exchange and gel filtration chromatography. The molecular mass of albolabrase was 33.7 kDa as determined by SDS-PAGE and 35.8 kDa as determined by Superose gel filtration chromatography. The N-terminal sequence was determined to be VVGGDECNINE which is homologous to many snake venom thrombin-like enzymes. Albolabrase exhibits both arginine ester hydrolase and arginine amidase activities and the enzyme is fastidious towards tripeptide chromogenic anilide substrates. The fibrinogen clotting activity was optimum at 3 mg/mL bovine fibrinogen, and showed distinct species differences in the following decreasing order: bovine fibrinogen > dog fibrinogen ≈ human fibrinogen > goat fibrinogen. The enzyme failed to clot both rabbit and cat fibrinogens. Reversed-phase HPLC analysis on the breakdown products of fibrinogenolytic action of albolabrase indicated that the enzyme belongs to the AB class of snake venom thrombin-like enzyme. In the indirect ELISA, IgG anti-albolabrase reacted extensively with most crotalid venoms, except with Tropidolaemus wagleri and Calloselasma rhodostoma venoms. The double sandwich ELISA, however, showed that anti-albolabrase reacted strongly only with venoms from the Trimeresurus complex, and that the results support the proposed new taxonomy changes concerning the Trimeresurus complex.  相似文献   

20.
Hung YC  Sava V  Hong MY  Huang GS 《Life sciences》2004,74(16):2037-2047
Antivenin activity of melanin extracted from black tea (MEBT) was reported for the first time. The antagonistic effect of MEBT was evaluated for Agkistrodon contortrix laticinctus (broadbanded copperhead), Agkistrodon halys blomhoffii (Japanese mamushi), and Crotalus atrox (western diamondback rattlesnake) snake venoms administered i.p. to ICR mice. MEBT was injected i.p. immediately after the venom administration in dose of 3 mg per mouse in the same place of venom injection. MEBT demonstrated neutralization effect against all venoms tested. The greatest antivenin effect of MEBT was found against Japanese mamushi snake venom. In this case, half the mice died within 2.5 +/- 0.7 h after injection of 0.9 mg/kg of venom. An immediate injection of MEBT substantially reduced the toxic effect of venom and extended time at the 50% level of survival up to 52.3 +/- 2.3 h. The antivenin activity of MEBT is due to chelating of Ca++ and non-specific binding of phospholipase A2. The inhibitory effect of MEBT on phospholipase A2 assessed for different venoms was similar to that obtained with pure enzyme. Low toxicity of MEBT in combination with its antagonistic activity against different venoms may allow effective life-saving treatment against snakebites. Such application of MEBT is important when identification of the snake is impossible or if specific treatment is unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号