首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Hypoxia from birth increases resistance to myocardial ischemia in infant rabbits. We hypothesized that increased cardioprotection in hearts chronically hypoxic from birth persists following development in a normoxic environment and involves increased activation of nitric oxide synthase (NOS) and ATP-dependent K (K(ATP)) channels. Resistance to myocardial ischemia was determined in rabbits raised from birth to 10 days of age in a normoxic (Fi(O(2)) = 0.21) or hypoxic (Fi(O(2)) = 0.12) environment and subsequently exposed to normoxia for up to 60 days of age. Isolated hearts (n = 8/group) were subjected to 30 min of global ischemia followed by 35 min of reperfusion. At 10 days of age, resistance to myocardial ischemia (percent recovery postischemic recovery left ventricular developed pressure) was higher in chronically hypoxic hearts (68 +/- 4%) than normoxic controls (43 +/- 4%). At 10 days of age, N(G)-nitro-L-arginine methyl ester (200 microM) and glibenclamide (3 microM) abolished the cardioprotective effects of chronic hypoxia (45 +/- 4% and 46 +/- 5%, respectively) but had no effect on normoxic hearts. At 30 days of age resistance to ischemia in normoxic hearts declined (36 +/- 5%). However, in hearts subjected to chronic hypoxia from birth to 10 days and then exposed to normoxia until 30 days of age, resistance to ischemia persisted (63 +/- 4%). L-NAME or glibenclamide abolished cardioprotection in previously hypoxic hearts (37 +/- 4% and 39 +/- 5%, respectively) but had no effect on normoxic hearts. Increased cardioprotection was lost by 60 days. We conclude that cardioprotection conferred by adaptation to hypoxia from birth persists on subsequent exposure to normoxia and is associated with enhanced NOS activity and activation of K(ATP) channels.  相似文献   

2.
Chronic hypoxia may precondition the myocardium and protect from ischemia-reperfusion damage. We therefore examined the recovery of left and right ventricular function after ischemia and reperfusion (15 min each) in isolated blood-perfused working hearts from normoxic (Norm) and hypoxic (Hypo; 14 days, 10.5% O(2)) adult rats. In addition, the mRNA expression of hypoxia-inducible factor (HIF)-1alpha and the protein expression of endothelial nitric oxide synthase (eNOS) were measured. Postischemic left ventricular function recovered to 66 +/- 6% and 67 +/- 5% of baseline in Norm and Hypo, respectively. In contrast, postischemic right ventricular function was 93 +/- 2% of baseline in Hypo vs. 67 +/- 3% in Norm (P < 0.05). Improved postischemic right ventricular function in Hypo (93 +/- 2% and 96 +/- 2% of baseline) was observed with 95% O(2) or 21% O(2) in the perfusate, and it was not attenuated by glibenclamide (5 and 10 micromol/l) (86 +/- 4% and 106 +/- 6% recovery). HIF-1alpha mRNA and eNOS protein expression were increased in both left and right hypoxic ventricles. In conclusion, postischemic right, but not left, ventricular function was improved by preceding chronic hypoxia. ATP-sensitive K(+) channels are not responsible for the increased right ventricular tolerance to ischemia after chronic hypoxia in adult rat hearts.  相似文献   

3.
We examined cardioprotective effect of chronic hypoxia and the time course of its recovery under normoxic conditions. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 35 exposures) and susceptibility of their hearts to ischemia-induced ventricular arrhythmias and myocardial infarction was evaluated in anesthetized open-chest animals subjected to 30-min coronary artery occlusion and 4-h reperfusion on the day after the last hypoxic exposure and at 7, 35 and 90 days of normoxic recovery. The infarct size was reduced from 69.2+/-1.7 % of the area at risk in normoxic controls to 48.0+/-2.2 % in the chronically hypoxic group and to 61.6+/-2.3 % in the group recovered for 7 days. This residual protection persisted for at least 35 days of normoxic recovery but it was absent after 90 days. In contrast to the infarct size-limitation, the antiarrhythmic protection disappeared already during the first week; the incidence of ventricular fibrillation was even significantly increased 7 and 90 days after the last hypoxic exposure. In conclusion, the duration of cardioprotection induced by chronic hypoxia differs markedly, depending on the end point of ischemia/reperfusion injury examined. Whereas the increased tolerance to lethal myocardial injury persists for at least 5 weeks after the termination of hypoxia, the antiarrhythmic protection rapidly vanishes, being replaced with transient proarrhythmic effect.  相似文献   

4.
To test whether cardioprotection induced by ischemic preconditioning depends on the opening of mitochondrial ATP-sensitive K(+) (K(ATP)) channels, the effect of channel blockade was studied in barbital-anesthetized open-chest pigs subjected to 30 min of complete occlusion of the left anterior descending coronary artery and 3 h of reflow. Preconditioning was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. 5-Hydroxydecanoate (5 mg/kg iv) was injected 15 min before preconditioning or pharmacological preconditioning induced by diazoxide (3.5 mg/kg, 1 ml/min iv). Infarct size (percentage of the area at risk) after 30 min of ischemia was 35.1 +/- 9.9% (n = 7). Preconditioning markedly limited myocardial infarct size (2.7 +/- 1.6%, n = 7), and 5-hydroxydecanoate did not abolish protection (2.4 +/- 0.9%, n = 8). Diazoxide infusion also significantly limited infarct size (14.6 +/- 7.4%, n = 7), and 5-hydroxydecanoate blocked this effect (30.8 +/- 8.0%, n = 7). Thus the opening of mitochondrial K(ATP) channels is cardioprotective in pigs, but these data do not support the hypothesis that opening of mitochondrial K(ATP) channels is required for the endogenous protection afforded by preconditioning.  相似文献   

5.
The effect of chronic hypercapnia on cardioprotection induced by chronic hypoxia was investigated in adult male Wistar rats exposed to isobaric hypoxia (10 % O(2)) for three weeks. In the first experimental group, CO(2) in the chamber was fully absorbed; in the second group, its level was increased to 4.1 %. Normoxic controls were kept in atmospheric air. Anesthetized open-chest animals were subjected to 20-min LAD coronary artery occlusion and 3-h reperfusion for infarct size determination (TTC staining). Chronic hypoxia alone reduced body weight and increased hematocrit; these effects were significantly attenuated by hypercapnia. The infarct size was reduced from 61.9+/-2.2 % of the area at risk in the normoxic controls to 44.5+/-3.3 % in the hypoxic group (P<0.05). Hypercapnia blunted the infarct size-limiting effect of hypoxia (54.8+/-2.4 %; P<0.05). It is concluded that increased CO(2) levels in the inspired air suppress the development of the chronic hypoxia-induced cardioprotective mechanism, possibly by interacting with ROS signalling pathways.  相似文献   

6.
This study was conducted to examine the relationship between myocardial ATP-sensitive potassium (K(ATP)) channels and sex differences in myocardial infarct size after in vitro ischemia-reperfusion (I/R). Hearts from adult male and female Sprague-Dawley rats were excised and exposed to an I/R protocol (1 h of ischemia, followed by 2 h of reperfusion) on a modified Langendorff apparatus. Hearts from female rats showed significantly smaller infarct sizes than hearts from males (23 +/- 4 vs. 40 +/- 5% of the zone at risk, respectively; P < 0.05). Administration of HMR-1098, a sarcolemmal K(ATP) channel blocker, abolished the sex difference in infarct size (42 +/- 4 vs. 45 +/- 5% of the zone at risk in hearts from female and male rats, respectively; P = not significant). Further experiments showed that blocking the K(ATP) channels in ischemia, and not reperfusion, was sufficient to increase infarct size in female rats. These data demonstrate that sarcolemmal K(ATP) channels are centrally involved in mechanisms that underlie sex differences in the susceptibility of the intact heart to I/R injury.  相似文献   

7.
Previous studies in our laboratory suggest that an acute inhibition of glycogen synthase kinase 3 (GSK3) by SB-216763 (SB21) is cardioprotective when administered just before reperfusion. However, it is unknown whether the GSK inhibitor SB21 administered 24 h before ischemia is cardioprotective and whether the mechanism involves ATP-sensitive potassium (K(ATP)) channels and the mitochondrial permeability transition pore (MPTP). Male Sprague-Dawley rats were administered the GSK inhibitor SB21 (0.6 mg/kg) or vehicle 24 h before ischemia. Subsequently, the rats were acutely anesthetized with Inactin and underwent 30 min of ischemia and 2 h of reperfusion followed by infarct size determination. Subsets of rats received either the sarcolemmal K(ATP) channel blocker HMR-1098 (6 mg/kg), the mitochondrial K(ATP) channel blocker 5-hydroxydecanoic acid (5-HD; 10 mg/kg), or the MPTP opener atractyloside (5 mg/kg) either 5 min before SB21 administration or 5 min before reperfusion 24 h later. The infarct size was reduced in SB21 compared with vehicle (44 +/- 2% vs. 61 +/- 2%, respectively; P < 0.01). 5-HD administered either before SB21 treatment or 5 min before reperfusion the following day abrogated SB21-induced protection (54 +/- 4% and 61 +/- 2%, respectively). HMR-1098 did not affect the SB21-induced infarct size reduction when administered before the SB21 treatment (43 +/- 1%); however, HMR-1098 partially abrogated the SB21-induced infarct size reduction when administered just before reperfusion 24 h later (52 +/- 1%). The MPTP opening either before SB21 administration or 5 min before reperfusion abrogated the infarct size reduction produced by SB21 (61 +/- 2% and 62 +/- 2%, respectively). Hence, GSK inhibition reduces infarct size when given 24 h before the administration via the opening K(ATP) channels and MPTP closure.  相似文献   

8.
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.  相似文献   

9.
The aims of the current study were to 1) examine the effects of hypoxia and acidosis on cultured cortical neurons and 2) explore the role of transporters and ion channels in hypoxic injury. Cell injury was measured in cultured neurons or hippocampal slices following hypoxia (1% O(2)) or acidosis (medium pH 6.8) treatment. Inhibitors of transporters and ion channels were employed to investigate their roles in hypoxic injury. Our results showed that 1) neuronal damage was apparent at 5-7 days of hypoxia exposure, i.e., 36-41% of total lactate dehydrogenase was released to medium and 2) acidosis alone did not lead to significant injury compared with nonacidic, normoxic controls. Pharmacological studies revealed 1) no significant difference in neuronal injury between controls (no inhibitor) and inhibition of Na(+)-K(+)-ATP pump, voltage-gated Na(+) channel, ATP-sensitive K(+) channel, or reverse mode of Na(+)/Ca(2+) exchanger under hypoxia; however, 2) inhibition of NBCs with 500 microM DIDS did not cause hypoxic death in either cultured cortical neurons or hippocampal slices; 3) in contrast, inhibition of Na(+)/H(+) exchanger isoform 1 (NHE1) with either 10 microM HOE-642 or 2 microM T-162559 resulted in dramatic hypoxic injury (+95% for HOE-642 and +100% for T-162559 relative to normoxic control, P < 0.001) on treatment day 3, when no death occurred for hypoxic controls (no inhibitor). No further damage was observed by NHE1 inhibition on treatment day 5. We conclude that inhibition of NHE1 accelerates hypoxia-induced neuronal damage. In contrast, DIDS rescues neuronal death under hypoxia. Hence, DIDS-sensitive mechanism may be a potential therapeutic target.  相似文献   

10.
Tang B  Tang M  Du YM  Liu CJ  Hong ZG  Luo HY  Hu XW  Song YL  Xi JY  Hescheler J 《生理学报》2004,56(5):625-631
为了从离子通道水平上探讨机体低氧适应的离子机制,本实验将雄性 SD 大鼠随机分为常氧对照组和慢性间歇性低氧组[氧浓度(10 ± 0.5) %, 间断缺氧每天 8 h]。用酶解法急性分离单个大鼠肺内动脉平滑肌细胞(pulmonary artery smoothmuscle cells, PASMCs),以全细胞膜片钳技术记录 PASMCs 膜上的电压门控性钾通道 (voltage-gated potassium channel, KV) 电流,观察急性缺氧对慢性间歇性低氧大鼠 PASMCs 的 KV 的影响, 为机体适应低氧能力提供实验依据。结果显示:⑴常氧对照组在电流钳下,急性缺氧可使膜电位明显去极化(由-47.2 ±2.6 mV 去极到 -26.7 ±1.2 mV ); 在电压钳下, 急性缺氧可显著抑制 KV电流( 60 mV 时, KV电流密度从 153.4 ± 9.5 pA/pF降到 70.1 ± 10.6 pA/pF), 峰电流的抑制率为(57.6 ± 3.3) %, 电流-电压关系曲线向右下移。⑵慢性间歇性低氧组KV电流密度随低氧时间延长而逐渐减少(慢性低氧10 d后就有显著性意义),电流- 电压关系曲线逐渐右下移。⑶急性缺氧对慢性间歇性低氧大鼠PASMCs KV电流的抑制作用随慢性间歇性低氧时间延长而逐渐减弱。上述观察结果提示慢性间歇性低氧减弱急性缺氧对 KV 的抑制, 这可能是机体低氧适应的一种重要机制。  相似文献   

11.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

12.
We tested whether mitochondrial or sarcolemmal ATP-sensitive K(+) (K(ATP)) channels play a key role in ischemic preconditioning (IP) in canine hearts. In open-chest beagle dogs, the left anterior descending artery was occluded four times for 5 min each with 5-min intervals of reperfusion (IP), occluded for 90 min, and reperfused for 6 h. IP as well as cromakalim and nicorandil (nonspecific K(ATP) channel openers) markedly limited infarct size (6.3 +/- 1.2, 8.9 +/- 1.9, and 7.2 +/- 1.6%, respectively) compared with the control group (40.9 +/- 4.1%). A selective mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate, partially blunted the limitation of infarct size in the animals subjected to IP and those treated with cromakalim and nicorandil (21.6 +/- 3.8, 25.1 +/- 4.6, and 19.8 +/- 5.2%, respectively). A nonspecific K(ATP) channel blocker, glibenclamide, completely abolished the effect of IP (38.5 +/- 6.2%). Intracoronary or intravenous administration of a mitochondria-selective K(ATP) channel opener, diazoxide, at >100 micromol/l could only partially decrease infarct size (19.5 +/- 4.3 and 20.1 +/- 4.4%, respectively). In conclusion, mitochondrial and sarcolemmal K(ATP) channels independently play an important role in the limitation of infarct size by IP in the canine heart.  相似文献   

13.
We investigated the cardioprotective effect of 3-nitropropionic acid (3-NPA), an inhibitior of mitochondrial succinate dehydrogenase, and we wanted to show whether this protection is mediated by of opening mitochondrial ATP-sensitive potassium (K(ATP)) channels. Adult rabbits were treated with either 3-NPA (3 mg/kg iv) or saline (n = 6 rabbits/group). After 30 min (for early phase) or 24 h (for late phase) of the treatment, the animals were subjected to 30 min of ischemia and 3 h of reperfusion (ischemia-reperfusion). 5-Hydroxydecanoate (5-HD, 5 mg/kg iv),the mitochondrial K(ATP) channel blocker, was administered 10 min before ischemia-reperfusion in the saline- and 3-NPA-treated rabbits. 3-NPA caused a decrease in the infarct size from 27.8 +/- 4.2% in the saline group to 16.5 +/- 1.0% in the 3-NPA-treated rabbits during early phase and from 30.4 +/- 4.2% in the saline group to 17.6 +/- 1.05 in the 3-NPA group during delayed phase (P < 0.05, % of risk area). The anti-infarct effect of 3-NPA was blocked by 5-HD as shown by an increase in infarct size to 33 +/- 2.7% (early phase) and 31 +/- 2.4% (delayed phase) (P < 0.05 vs. 3-NPA groups). 5-HD had no proischemic effect in control animals. Also, 3-NPA had no effect on systemic hemodynamics. We conclude that 3-NPA induces long-lasting anti-ischemic effects via opening of mitochondrial K(ATP) channels.  相似文献   

14.
Glucose-free perfusion preconditions myocardium against the consequences of subsequent ischemia. We investigated whether mitochondrial ATP-sensitive potassium (mK (ATP)) channels are involved in preconditioning by glucose deprivation, and whether moderate glucose deprivation also preconditions myocardium. Isolated rat hearts underwent 30 min of no-flow ischemia followed by 1 h reperfusion. Controls were not further treated. Three groups were preconditioned by perfusion with 0, 40 or 80 mg/dl (0, 2.22, 4.44 mmol/l) glucose (correction of osmotic pressure by addition of urea) for 10 min followed by 10 min perfusion with normal buffer (150 mg/dl, or 8.33 mmol/l glucose) before the ischemia reperfusion protocol. In one group, 100 micromol/l of the mK (ATP) channel blocker 5-HD was added to the glucose-free perfusate. Two groups were treated with 5-HD or urea before ischemia without preconditioning. Left ventricular developed pressure and maximum ischemic contracture (82 +/- 21 mmHg) were similar in all groups. Mean left ventricular developed pressure was 100 +/- 16 mm Hg under baseline conditions, and poorly recovered to 8 +/- 11 mm Hg during reperfusion. Preconditioning with 0 and 40 mg/dl glucose containing buffer reduced infarct size from 41 +/- 10% (control) to 23 +/- 12% (p = 0.02) and 26 +/- 8% (p = 0.011). The 5-HD blocked preconditioning by glucose deprivation (38 +/- 9%, p = 0.04) while 80 mg/dl glucose, 5-HD and urea had no effect on infarct size (39 +/- 9%; 38 +/- 13%; 37 +/- 8%; p = 1.0 each). We conclude that transient severe glucose deprivation and moderate glucose deprivation preconditions the isolated rat heart. Preconditioning by complete glucose deprivation depends on the opening of mK (ATP) channels.  相似文献   

15.
Sildenafil citrate (Viagra) is the pharmacological agent used to treat erectile dysfunction in men. Because this drug has a vasodilatory effect, we hypothesized that such an action may induce a preconditioning-like cardioprotective effect via opening of mitochondrial ATP-sensitive K (K(ATP)) channels. Rabbits were treated with sildenafil citrate (0.7 mg/kg iv) either 30 min (acute phase) or 24 h (delayed phase) before 30 min of ischemia and 3 h of reperfusion. Mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD, 5 mg/kg iv) was given 10 min before ischemia-reperfusion. Infarct size was measured by tetrazolium staining. Sildenafil caused reduction in arterial blood pressure within 2 min of treatment, which returned to nearly baseline levels 3 min later. The infarct size (% risk area, means +/- SE) reduced from 33.8 +/- 1.7 in control rabbits to 10.8 +/- 0.9 during the acute phase (68% reduction, P < 0.05) and 19.9 +/- 2.0 during the delayed phase (41% reduction, P < 0.05). 5-HD abolished protection with an increase in infarct size to 35.6 +/- 0.4% and 36.8 +/- 1.6% during the acute and delayed phase, respectively (P < 0.05). Similar acute and delayed cardioprotective effects were observed when sildenafil was administered orally. Systemic hemodynamics also decreased after oral administration of the drug. However, these changes were mild and occurred slowly. For the first time, we demonstrate that sildenafil induces acute and delayed protective effects against ischemia-reperfusion injury, which are mediated by opening of mitochondrial K(ATP) channels.  相似文献   

16.
Zhu HF  Dong JW  Zhu WZ  Ding HL  Zhou ZN 《Life sciences》2003,73(10):1275-1287
The aim of this study was to investigate the protection afforded by intermittent hypoxia (IH) against ischemia/reperfusion injury and its effects on calcium homeostasis during ischemia/reperfusion. The roles of KATP channels in these two actions were to be explored. Isolated hearts from IH and normoxic rats were subjected to 30 min global ischemia followed by 30 min reperfusion. Cardiac function was less deteriorated during ischemia and reperfusion in the IH rat hearts compared to normoxia rat hearts. Amplitude of the maximal contracture during ischemia was lower, while time to maximal contracture was extended in IH hearts. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax were higher in IH hearts than in normoxic hearts. KATP antagonist glibenclamide (10 microM) completely abolished these protective effects of IH, but had no appreciable influence on normoxic hearts. In cardiomyocytes isolated from normoxic hearts, [Ca2+]i, measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion (1.081 +/- 0.004 and 1.088 +/- 0.006 respectively, p<0.01 vs pre-ischemia perfusion). However, in cardiomyocytes isolated from IH hearts, [Ca2+]i kept at normal level during ischemia and reperfusion (1.012 +/- 0.006 and 1.021 +/- 0.002 respectively, P>0.05 vs pre-ischemia perfusion). 10 microM glibenclamide and 100 microM 5-hydroxydecanoate (a selective mitochondria KATP antagonist) respectively abolished this effect of IH; calcium overloading reappeared during ischemia (1.133 +/- 0.007 and 1.118 +/- 0.007 respectively, P<0.01) and reperfusion (1.091 +/- 0.004 and 1.095 +/- 0.012 respectivly, P<0.01). However they had no effects on simulated ischemia and reperfusion-induced calcium overloading in normoxic myocytes. 50 microM pinacidil, a KATP opener, attenuated calcium overloading during ischemia and reperfusion in normoxic myocytes, but had no effect on [Ca2+]i change in IH myocytes. These results suggested that KATP channels contributed to the cardiac protection induced by IH against ischemia/reperfusion injury; the elimination of calcium overloading during ischemia/reperfusion by IH might underlie the mechanism of protection.  相似文献   

17.
At birth, the increase in O(2) tension (pO(2)) is an important cause of the decrease in pulmonary vascular resistance. In adult animals there are impressive interspecies differences in the level of hypoxia required to elicit a pulmonary vasoconstrictor response and in the amplitude of the response. Hypoxic inhibition of some potassium (K(+)) channels in the membrane of pulmonary arterial smooth muscle cells (PASMCs) helps to initiate hypoxic pulmonary vasoconstriction. To determine the effect of the change in pO(2) on fetal rabbit PASMCs and to investigate possible species-dependent differences, we measured the current-voltage relationship and the resting membrane potential, in PASMCs from fetal resistance arteries using the amphotericin-perforated patch-clamp technique under hypoxic and normoxic conditions. Under hypoxic conditions, the K(+) current in PASMCs was small, and could be inhibited by 4-aminopyridine, iberiotoxin and glibenclamide, reflecting contributions by Kv, K(Ca) and K(ATP) channels. The average resting membrane potential was -44.3+/-1.3 mV (n=29) and could be depolarized by 4-AP (5 mM) and ITX (100 nM) but not by glibenclamide (10 microM). Changing from hypoxia, that mimicked fetal life, to normoxia dramatically increased the K(Ca) and consequently hyperpolarized (-9.3+/-1.7 mV; n=8) fetal rabbit PASMCs. Under normoxic conditions K(+) current was reduced by 4-AP with a significant change in resting membrane potential (11.1+/-1.7 mV; n=8). We conclude that resting membrane potential in fetal rabbit PASMCs under both hypoxic and normoxic conditions depends on both Kv and K(Ca) channels, in contrast to fetal lamb or porcine PASMCs. Potential species differences in the K(+) channels that control resting membrane potential must be taken into consideration in the interpretation of studies of neonatal pulmonary vascular reactivity to changes in O(2) tension.  相似文献   

18.
We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 microl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 +/- 0.7, n = 13) compared with sham treatment (9.5 +/- 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 +/- 3.6% (n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 +/- 4.8% (n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 microl saline), a selective blocker of mitoK(ATP) channels (n = 6). These results indicate that selective opening of the mitoK(ATP) channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.  相似文献   

19.
20.
The present study was conducted to determine whether the infarct sparing effect of short-term exercise is dependent on the operation of the myocardial sarcolemmal ATP-sensitive K(+) (K(ATP)) channel. Adult male and female Sprague-Dawley rats were exercised on a motorized treadmill for 5 days. Twenty-four hours following the training or sedentary period, hearts were isolated and exposed to 1 h of regional ischemia followed by 2 h of reperfusion on a modified Langendorf apparatus in the presence or absence of the sarcolemmal K(ATP) channel antagonist HMR-1098 (30 microM). Following the ischemia-reperfusion protocol, infarct size was determined as a percentage of the total ischemic zone at risk (ZAR). Short-term exercise reduced infarct size by 24% in males (32 +/- 2% of ZAR; P < 0.01) and by 18% in females (26 +/- 2% of ZAR; P < 0.05). Sarcolemmal K(ATP) channel blockade abolished the training-induced cardioprotection in both males and females, increasing infarct size to 43 +/- 3% and 52 +/- 4% of ZAR, respectively. In the absence of HMR-1098, infarct size was significantly lower in sedentary females than in males (33 +/- 4% vs. 42 +/- 2% of ZAR, respectively; P < 0.01). However, the presence of HMR-1098 abolished this sex difference, increasing infarct size by 58% in the sedentary females (P < 0.01) but having no effect on infarct size in sedentary males. This study demonstrates that the sex-specific and exercise-acquired resistance to myocardial ischemia-reperfusion injury is dependent on sarcolemmal K(ATP) activity during ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号