首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

2.
A method is described for the qualiitative and quantitative determination of phenylbutazone and oxyphenbutazone in horse urine and plasma samples viewing antidoping control. A horse was administered intravenously with 3 g of phenylbutazone. For the qualitative determination, a screening by HPLC was performed after acidic extraction of the urine samples and the confirmation process was realized by GC-MS. Using the proposed method it was possible to detect phenylbutazone and oxyphenbutazone in urine for up to 48 and 120 h, respectively. For the quantitation of these drugs the plasma was deproteinized with acetonitrile and 20 gml were injected directly into the HPLC system equipped with a UV detector and LiChrospher RP-18 column. The mobile phase used was 0.01 M acetic acid in methanol (45:55, v/v). The limit of detection was 0.5 μg/ml for phenylbutazone and oxyphenbutazone and the limit of quantitation was 1.0 μg/ml for both drugs. Using the proposed method it was possible to quantify phenylbutazone up to 30 h and oxyphenbutazone up to 39 h after administration.  相似文献   

3.
A new high-performance liquid chromatographic method for the simultaneous determination of indinavir, saquinavir and ritonavir in human plasma is described. Quantitative recovery following liquid–liquid extraction with diethyl ether from 500 μl of human plasma was achieved. Subsequently, the assay was performed with a linear gradient starting at 67 mM potassium dihydrogenphosphate–acetonitrile (65:35 to 40:60, v/v) as a mobile phase, a Phenomenex C18 column and UV detection at 240 and 258 nm, respectively. Linear standard curves were obtained for concentrations ranging from 75 to 20 000 ng/ml for indinavir, from 10 to 6000 ng/ml for saquinavir, and from 45 to 30 000 ng/ml for ritonavir. The calculated intra- and inter-day coefficients of variation were below 6%.  相似文献   

4.
A specific liquid chromatographic method for the determination of 4-[[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbonyl]amino]benzoic acid (Am580) in rat plasma is described. The procedure includes one-step isolation of the compound and the internal standard (naphtol AS) from protein precipitated with acetonitrile, resolution on a reversed-phase column (Supelcosil LC18-DB, 5 μm) with water-acetonitrile-methanol-n-butanol (45:40:14:1, v/v) containing 65 mM ammonium acetate as elution system and UV absorbance detection at 280 nm. The assay was linear over a wide range (25–5000 ng ml−1) and the limit of quantitation was 25 ng ml−1 using 0.2 ml of plasma. It was precise and reproducible enough for pharmacokinetic studies. Application to a preliminary disposition study in the rat indicated that Am580 was characterized by a relatively large apparent volume of distribution (1.1–1.5 l kg−1) and small clearance (8.8–9.7 ml min−1 kg−1). Its pharmacokinetic behaviour was linear within the dose range considered (2 and 10 mg kg−1, i.p.).  相似文献   

5.
A liquid chromatographic–mass spectrometric (LC–MS) assay was developed and validated for the determination of itraconazole (ITZ) in rat heparinized plasma using reversed-phase HPLC combined with positive atmospheric pressure ionization (API) mass spectrometry. After protein precipitation of plasma samples (0.1 ml) with acetonitrile containing nefazodone as an internal standard (I.S.), a 50-μl aliquot of the supernatant was mixed with 100 μl of 10 mM ammonium formate (pH 4.0). An aliquot of 25 μl of the mixture was injected onto a BDS Hypersil C18 column (50×2 mm; 3 μm) at a flow-rate of 0.3 ml/min. The mobile phase comprising of 10 mM ammonium formate (pH 4) and acetonitrile (60:40, v/v) was used in an isocratic condition, and ITZ was detected in single ion monitoring (SIM) mode. Standard curves were linear (r2≥0.994) over the concentration range of 4–1000 ng/ml. The mean predicted concentrations of the quality control (QC) samples deviated by less than 10% from the corresponding nominal values; the intra-assay and inter-assay precision of the assay were within 8% relative standard deviation. Both ITZ and I.S. were stable in the injection solvent at room temperature for at least 24 h. The extraction recovery of ITZ was 96%. The validated assay was applied to a pharmacokinetic study of ITZ in rats following administration of a single dose of itraconazole (15 mg/kg).  相似文献   

6.
We have developed and validated a sensitive and selective assay for the quantification of paclitaxel and its metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in plasma, tissue, urine and faeces specimens of mice. Tissue and faeces were homogenized (approximately 0.1–0.2 g/ml) in bovine serum albumin (40 g/I) in water, and urine was diluted (1:5, v/v) in blank human plasma. Sample pretreatment involved liquid-liquid extraction of 200–1000 μl of sample with diethyl ether followed by automated solid-phase extraction using cyano Bond Elut column. 2′-Methylpaclitaxel was used as internal standard. The overall recovery of the sample pretreatment procedure ranged from 76 ot 85%. In plasma, the lower limit of detection (LOD) and the lower limit of quantitation (LLQ) are 15 and 25 ng/ml, respectively, using 200 μl of sample. In tissues, faeces and urine the LLQs are 25–100 ng/g, 125 ng/g and 25 ng/ml, respectively, using 1000 μl (faeces: 200 μl) of homogenized or diluted sample. The concentrations in the various biological matrices, for validation procedures spiked with known amounts of the test compounds, are read from calibration curves constructed in blank human plasma in the range 25–100 000 ng/ml for paclitaxel and 25–500 ng/ml for the metabolites. The accuracy and precision of the assay fall within the generally accepted criteria for bio-analytical assays.  相似文献   

7.
A gas-liquid chromatographic (GLC) assay suitable for the analysis of the cis(Z)-stereoisomer of the antipsychotic drug flupentixol in human serum or plasma was developed. The minimal quantifiable concentration was 0.5 ng/ml and the day-to-day coefficient of variation was 11.2% at 1 ng/ml and 8.7% at 10 ng/ml. Following addition of perphenazine as the internal standard (I.S.) and aqueous NaOH, samples (2 ml) are extracted with n-hexane-isoamyl alcohol (98.5:1.5, v/v) (solvent), back-extracted to 0.1 M HCl and after one washing-step and addition of aqueous NaOH again extracted into 100 μl solvent. After evaporation to dryness, the extract is reconstituted in 20 μl solvent and evaporated to approximative 10 μl. A 4-μl aliquot is injected cool on-column onto the GLC system. A gas chromatograph HP 5890 with on-column injection port, nitrogen-phosphorus detector (NPD), a HP-1 25 m × 0.32 mm I.D., 0.5 μm capillary and hydrogen (3 ml/min, automated pressure control) as the carrier gas was applied. The negative influence of light on the assay was measured and discussed. The suitability of this method for clinical pharmacokinetic studies and therapeutic drug monitoring (TDM) was determined by the analysis of serum samples of 12 schizophrenic patients.  相似文献   

8.
Quantitative methods for determination of amoxicillin in body fluids are described. They comprise separation by reversed-phase chromatography (LiChrosorb RP-8, 5 μm) of the aqueous supernatants obtained from plasma or urine after purification steps involving protein precipitation followed by extraction in the case of plasma, or a double extraction procedure in the case of urine, post-column derivatization with air segmentation, and finally measurement of the UV absorbance at 310 nm. The derivatization involves formation of the mercuric mercaptide of penicillenic acid and is specific for compounds with an intact penicillanic acid ring system.Detection limits achieved on injecting 200 μl of plasma and 20 μl of urine are about 25 ng/ml and 200 ng/ml, respectively, but it is possible to improve the sensitivity further by injecting larger volumes. Precisions (srel) obtained for determination of 0.10 and 0.45 μg/ml in plasma were 3.72 and 1.40%, respectively.Some problems regarding column stability originating from the injection of biological samples are discussed.  相似文献   

9.
A sensitive and selective bioanalytical liquid chromatographic method for diclofenac is described. The drug was detected as a fluorescent derivative, which was demonstrated by 1H NMR and mass spectrometric studies to be carbazole acetic acid. Diclofenac was derivatized by UV irradiation of the substance performed as a post-column photoreaction. The reactor was a PTFE capillary wound around a 254-nm UV lamp. Diclofenac was isolated from the plasma samples by precipitation of the proteins with acetonitrile. A 50-μl volume of the supernatant was injected onto a Nucleosil C18 column. The mobile phase was 32% acetonitrile in pH 6.6 buffer. Carbazole acetic acid was detected by a fluorescence detector using an excitation wavelength of 288 nm and an emission wavelength of 360 nm. The recovery was 92%, the standard curve was linear in the range 10–5500 ng diclofenac per ml plasma, and the relative standard deviation at 10 and 5000 ng of diclofenac per ml plasma was 9.0% and 3.3%, respectively. The limit of detection was 6 ng/ml at an injection volume of 50 μl. Chromatograms of human and rat plasma containing diclofenac are shown.  相似文献   

10.
The present describes a new high-performance liquid chromatographic method with fluorescence detection for the analysis of levodropropizine [S-(−)-3-(4-phenylpiperazin-1-yl)-propane-1,2-diol] (Levotuss), an anti-tussive drug, in human serum and plasma. A reversed-phase separation of levodropropizine was coupled with detection of the native fluorescence of the molecule, using excitation and emission wavelengths of 240 nm and 350 nm respectively. The analytical column was packed with spherical 5 μm poly(styrene-divinylbenzene) particles and the mobile phase was 0.1 M NaH2PO4 pH 3-methanol (70:30, v/v), containing 0.5% (v/v) tetrahydrofuran. For quantitation, p-methoxylevodropropizine was used as the internal standard. Samples of 200 μl of either serum or plasma were mixed with 200 μl of 0.1 M Na2HPO4 pH 8.9 and extracted with 5 ml of chloroform-2-propanol (9:1, v/v). The dried residue from the organic extract was redissolved with distilled water and directly injected into the chromatograph. The limit of detection for levodropropizine, in biological matrix, was about 1–2 ng/ml, at a signal-to-noise ratio of 3. The linearity was satisfactory over a range of concentrations from 3 to 1000 ng/ml (r2 = 0.99910); within-day precision tested in the range 5–100 ng/ml as well as day-to-day reproducibility proved acceptable, with relative standard deviations better than 1% in most cases. Interferences from as many as 91 therapeutic or illicit drugs were excluded.  相似文献   

11.
A high-performance liquid chromatographic method for the determination of naproxen in plasma is described. The technique is based on the single extraction of the drug from acidified plasma with chloroform using 2-naphthalene acetic acid as internal standard. The chromatographic system consisted of a column packed with Spherisorb ODS (5 μm); the mobile phase was acetonitrile—phosphoric acid (pH 3) (45:55, v/v).The method can accurately measure plasma naproxen concentrations down to 1 μg/ml using 100 μl of sample, with no interference from endogenous compounds. The coefficients of variation of the method at 120 μg/ml and 1 μg/ml are 2.8 and 21.6%, respectively, and the calibration curve is linear. The method described is very suitable for routine clinical and pharmacokinetic studies.  相似文献   

12.
A fully automated gradient high-performance liquid chromatographic method for the determination of isotretinoin, tretinoin and their 4-oxo metabolites in plasma was developed, using the column-switching technique. After dilution with an internal standard solution containing 20% acetonitrile, 0.5 ml of the sample was injected onto a precolumn (17x4.6 mm I.D.), filled with C18 Corasil 37–53 μm. Proteins and polar plasma components were washed out using 1% ammonium acetate-acetonitrile (9:1, v/v) as mobile phase 1. After valve switching, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm by UV detection. Using two coupled reversed-phase columns (125 mm long), the separation of cis and trans isomers was possible, and all four compounds could be quantified down to 2 ng/ml of plasma. The inter-assay precision in the concentration range 20-1000 ng/ml was between 1.0 and 4.7% for all compounds.  相似文献   

13.
A reversed-phase high-performance liquid chromatographic method for the determination of sinefungin, a new antiprotozoal drug, in rat plasma has been developed and validated. Sample preparation was performed at 4°C by deproteinization with acetonitrile. Vidarabine was used as an internal standard. Both sinefungin and vidarabine were separated on a C18 column with a mobile phase of ammmonium dihydrogenphosphate-acetonitrile (95:5, v/v) and detected by ultraviolet absorbance at 260 nm. Recoveries of sinefungin from plasma were 75 ± 3.2% and 81 ± 4.8% following dosage at concentrations of 10 μg/ml and 30 μ/ml, respectively. Using 25- μl of rat plasma the limit of quantitation was 1 μg/ml sinefungin, and the assay was linear from 1 to 30 μg/ml. This method appears sensitive enough to be used in further pharmacokinetic studies of sinefungin in animal models.  相似文献   

14.
A high-performance liquid chromatographic method is described for the determination of citalopram [1-(3-(dimethylaminopropyl)-1-(4-fluorophenyl)-5-phthalancarbonitrile] and its two main metabolites (the methylamino and amino derivatives). The compounds were extracted from alkaline plasma with diethyl ether. The combined ether layers were evaporated after addition of 50 μl of 0.1 N HCl. The residual extracts were purified with diethyl ether and 20 μl were injected into a Spherisorb ODS 5-μm column with acetonitrile–0.6% phosphate buffer pH 3 (55:45, v/v) as the mobile phase. Using a fluorescence detector the detection limits are 1 ng/ml of plasma for citalopram and the methylamino metabolite and 0.5 ng/ml for the amino metabolite.  相似文献   

15.
A sensitive, selective, and rapid high-performance liquid chromatographic procedure was developed for the determination of isoxicam in human plasma and urine. Acidified plasma or urine were extracted with toluene. Portions of the organic extract were evaporated to dryness, the residue dissolved in tetrahydrofuran (plasma) or acetonitrile (urine) and chromatographed on a μBondapak C18 column preceded by a 4–5 cm × 2 mm I.D. column packed with Corasil C18. Quantitation was obtained by UV spectrometry at 320 nm. Linearity in plasma ranged from 0.2 to 10 μg/ml. Recoveries from plasma samples seeded with 1.8, 4 and 8 μg/ml isoxicam were 1.86 ± 0.077, 4.10 ± 0.107 and 8.43 ± 0.154 μg/ml with relative standard deviations of 3.3%, 2.5% and 5.4%, respectively. The linearity in urine ranged from 0.125 to 2 μg/ml. The precision of the method was 3.3–9.0% relative standard deviation over the linear range.  相似文献   

16.
A reversed-phase, high-performance liquid chromatographic method using UV detection is described for the assay of the major metabolite of phentolamine in plasma and urine before or after enzymatic hydrolysis. Plasma is deproteinized with methanol. The sensitivity limit is 200 ng/ml using 150-μl samples. Urine is either diluted with water or purified after enzymatic hydrolysis. Concentrations down to 2–3 μg/ml could be quantified with acceptable precision. This method was applied to plasma and urine samples from subjects given phentolamine.  相似文献   

17.
DZ-2640 is a new oral carbapenem antibiotic having a dihydro-pyrroloimidazole ring as a side chain and a pivaloyloxymethyl (POM) ester prodrug of DU-6681, the active parent compound. A simple and sensitive column-switching semi-microcolumn high-performance liquid chromatographic method for the determination of DU-6681 in human plasma and urine has been developed. Human plasma was diluted with an equal volume of 1 M MOPS buffer (pH 7.0) and the mixture was filtered through an Ultrafree C3GV. The resulting filtrate was injected without further cleanup onto the HPLC system. Human urine was diluted with an equal volume of 1 M MOPS buffer (pH 7.0) and the mixture was directly injected onto the HPLC system. The analyte was detected by monitoring the column effluent with UV light at a wavelength of 300 nm, which resulted in the limit of quantitation of 0.008 μg/ml of plasma and 0.32 μg/ml of urine. Calibration curves were linear in the range of 0.008 to 5.85 μg/ml in plasma and 0.32 to 104.4 μg/ml in urine. The present methods showed greatly increased sensitivity for DU-6681 compared to conventional HPLC methods and also showed satisfactory recovery, selectivity, precision, and accuracy. Stability studies showed that 1 M MOPS buffer (pH 7.0) acted as a stabilizer. In plasma and urine diluted with equal volume of the buffer, DU-6681 showed good stability at −80°C for up to 4 weeks with no significant loss of the drug.  相似文献   

18.
Two high-performance liquid chromatographic (HPLC) methods are described for determination of (±)-ethopropazine (ET) in rat plasma. After deproteination and liquid–liquid extraction, assay of (±)-ET was performed using either a C18 column (non-stereospecific assay) or an (α-R-naphthyl)ethylurea column (stereospecific assay). The UV detection was at 250 nm. Mean recovery was >85%. Both assays demonstrated excellent linear relationships between peak height ratios and plasma concentrations; quantitation limits were ≤25 ng/ml, based on 100 μl rat plasma. Accuracy and precision were <17% with both methods. Both methods were applied successfully to the measurement of ET plasma concentrations in rats given the drug intravenously.  相似文献   

19.
A reversed-phase, high-performance liquid chromatographic method employing fluorescence detection is described for the rapid quantification of plasma levels of quinidine, dihydroquinidine and 3-hydroxyquinidine. It involves protein precipitation with acetonitrile followed by direct injection of the supernatant into the chromatograph. For the preparation of plasma standards, pure 3-hydroxyquinidine was isolated from human urine by a simplified thin-layer chromatographic procedure. The mobile phase for the chromatography was a mixture of 1.5 mM aqueous phosphoric acid and acetonitrile (90:10) at a flow-rate of 2 ml/min. The intra-assay coefficient of variation for the assay of quinidine and 3-hydroxyquinidine over the concentration range 2.5–20 μmole/l was < 1% for both. Interassay coefficients of variation for quinidine (10 μmole/l) and 3-hydroxyquinidine (5 μmole/l) were 3.5% and 4.0% with detection limits of 50 and 25 μmole/l respectively. The method correlated well (r2 = 0.96) with an independently developed gas—liquid chromatographic—nitrogen detection assay for quinidine which also possessed a high degree of precision. (Intra-assay coefficient of variation 3.6% at 20 μmole/l). As expected, comparison of the high-performance liquid chromatographic assay with a published protein precipitation—fluorescence assay showed poor correlation (r2 = 0.78).  相似文献   

20.
A gas chromatographic–mass spectrometric (GC–MS) assay was developed for the quantitative analysis of methyl salicylate (MeS), ethyl salicylate (ES) and salicylic acid (SA) from biological fluids. The method was validated from 100-μl rat liver homogenate preparations (5 mg/ml protein) in 70 mM KH2PO4 (pH 7.4) buffer and from 100 μl rat plasma. The samples were extracted with chloroform, derivatized with BSTFA and quantitated by GC–MS in the SIM mode. The standard curves ranged from 31 ng/ml to 800 or 1250 ng/ml. Relative standard deviations and bias were less than 11% in plasma and homogenate for all compounds except SA which evidenced greater variability. The assay was used in preliminary experiments to characterize the pharmacokinetics of MeS in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号