首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of quantum mechanical (QM) computational optimizations of molecularly imprinted polymer (MIP) systems were used to determine optimal monomer-to-target ratios. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (3–7 molecules) and larger-scale models (15–35 molecules). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to quantify the heterogeneity of these sites. The more fully surrounded sites had greater binding energies. No discretization of binding modes was seen, furthering arguments for continuous affinity distribution models. Molecular mechanical (MM) docking was then used to measure the selectivities of the QM-optimized binding sites. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. Here we present a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Modeling schemes were designed such that no computing clusters or other specialized modeling equipment would be required. Improving the in silico analysis of MIP system properties will ultimately allow for the production of more sensitive and selective polymers.  相似文献   

2.
Improved specificity and binding affinity by molecularly imprinted polymers is possible by development of novel functional materials. Furthermore, increasing the cross-link density of imprinted polymers by using cross-linking functional groups was anticipated to improve polymer molecular recognition. A novel cross-linking monomer derived from an L-aspartic acid precursor was synthesized and employed in molecularly imprinted polymers to mimic more closely the scaffolding of proteins, and thus provide more protein-like selectivity. Chromatographic results revealed a more than 7-fold improvement in polymers imprinted using the new monomer versus a traditionally formulated polymer imprinted with methacrylic acid as the functional monomer.  相似文献   

3.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

4.
In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.  相似文献   

5.
A one-step precipitation polymerization procedure for the synthesis of molecularly imprinted polymers selective for 17beta-estradiol yielding imprinted micro and nanospheres was developed in this study and compared to templated materials obtained by conventional bulk polymerization. The polymer particles prepared by precipitation polymerization exhibited a regular spherical shape at the micro and nanoscale with a high degree of monodispersity. Moreover, the influence of the polymerization temperature, and the ratio of functional monomer to cross-linker on the size of the obtained particles was investigated. The selectivity of the imprinted micro and nanospheres was evaluated by HPLC analysis and via radioligand binding assays. HPLC separation experiments revealed that the imprinted microspheres provide higher or similar affinity to the template in contrast to imprinted polymers prepared by conventional bulk polymerization or synthesized by multi-step swelling/polymerization methods. The dimensions of the imprinted nanospheres facilitate suspension in solution rendering them ideal for binding assay applications. Results from saturation and displacement assays prove that the imprinted nanospheres exhibit superior specific affinity to the target molecule in contrast to control materials. The binding properties of the nanospheres including binding isotherms and affinity distribution were studied via Freundlich isotherm affinity distribution (FIAD) analysis. Moreover, release experiments show that 70% of rebound 17beta-estradiol was released from the imprinted nanospheres within the first 2 h, while more intimately bound 17beta-estradiol molecules (approx. 16%) were released in the following 42 h. Fitting Brunnauer-Emmet-Teller (BET) multi-point adsorption isotherms to the obtained results indicated that the micro and nanospheres are characterized by a comparatively homogenous and narrow distribution of mesopores in contrast to the corresponding bulk polymers.  相似文献   

6.
Molecular imprints were prepared using L-phenylalanine anilide as the print molecule and methacrylic acid as the functional monomer. Methacrylic acid interacts ionically with the primary amine of the print molecule and via hydrogen bonding with the amide function. In the HPLC mode such polymers were shown to exhibit efficient enantiomeric resolution of a racemic mixture of the original print molecule. Enantiomeric resolution was shown to be dependent on the ratio of methacrylic acid to print molecule in the pre-polymerization mixture and specific for the presence of both print molecule and functional monomer. Further analyses showed the importance of both the primary amino and amide functions in the correct stereochemistry for recognition and enantiomeric resolution of compounds on such polymers. Other amide derivatives of amino acids including p-nitroanilides, beta-naphthylamides and amides were recognized by such polymers, and enantiomeric resolution was obtained for amide derivatives of amino acid ranging from alanine to tryptophan on a single polymer. The implications of these findings with respect to the mechanism of recognition and the ability to predict enantiomeric resolution of molecules on molecularly imprinted polymers will be discussed.  相似文献   

7.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

8.
The preparation of molecularly imprinted polymers (MIP) based on non-covalent interactions has become a widely used technique for creating highly specific sorbent materials predominantly used in separation chemistry. A crucial factor in a successful imprinting protocol is the optimisation of the template/functional monomer interaction in the pre-polymerisation mixture, eventually leading to a maximum of high-affinity binding sites in the resulting polymer matrix. In order to develop more efficient preparation technologies for imprinted polymers, two separate pre-polymerisation complexes were investigated by NMR spectroscopic techniques in order to identify the types of interactions occurring in the pre-polymerisation mixture, and their implications for the subsequently formed imprinted polymer. In particular, hydrophobic effects have been followed by NMR spectroscopy and their contribution to the selectivity of the resulting MIP has been investigated. The 2,4-D imprint system is used as an example to fundamentally study whether observations at the pre-polymerisation stage correlate with properties of the finally prepared MIP, and which parameters govern success of an imprinting protocol.  相似文献   

9.
Molecular imprinting technology is becoming a versatile tool for preparing tailor-made molecular recognition elements. However, inherent problems of the molecular imprinting technology include the availability and preparation of template molecules. We recently reported artificial enzyme sensors for fructosylamines constructed by imprinting with fructosyl valine (Fru-val), a model compound for HbA1c (Anal. Lett., 2003). However, because the availability of Fru-val is limited, we attempted to construct a Fru-val-oxidizing molecularly imprinted catalyst (MIC) utilizing the analogue molecule methyl valine (m-val) as template molecule. An electrode employing the m-val-imprinted polymer showed 1.2-fold higher sensitivity toward Fru-val compared with the control polymer-employing electrode. We also used the positively charged functional monomer allylamine as functional monomer in order to increase the selectivity of the MIC toward Fru-val. The selectivity of the electrode immobilizing the allylamine-containing polymer showed 1.7-fold higher response toward Fru-val than toward Fru--lys. By combining the use of both allylamine as the functional monomer and m-val as the template molecule, an even better MIC-immobilized electrode was produced with a Fru-val selectivity comparable to that constructed by imprinting with Fru-val.  相似文献   

10.
Molecular imprinting has become a promising approach for synthesis of polymeric materials having binding sites with a predetermined selectivity for a given analyte, the so‐called molecularly imprinted polymers (MIPs), which can be used as artificial receptors in various application fields. Realization of binding sites in a MIP involves the formation of prepolymerization complexes between a template molecule and monomers, their subsequent polymerization, and the removal of the template. It is believed that the strength of the monomer‐template interactions in the prepolymerization mixture influences directly on the quality of the binding sites in a MIP and consequently on its performance. In this study, a computational approach allowing the rational selection of an appropriate monomer for building a MIP capable of selectively rebinding macromolecular analytes has been developed. Molecular docking combined with quantum chemical calculations was used for modeling and comparing molecular interactions among a model macromolecular template, immunoglobulin G (IgG), and 1 of 3 electropolymerizable functional monomers: m‐phenylenediamine (mPD), dopamine, and 3,4‐ethylenedioxythiophene, as well as to predict the probable arrangement of multiple monomers around the protein. It was revealed that mPD was arranged more uniformly around IgG participating in multiple H‐bond interactions with its polar residues and, therefore, could be considered as more advantageous for synthesis of a MIP for IgG recognition (IgG‐MIP). These theoretical predictions were verified by the experimental results and found to be in good agreement showing higher binding affinity of the mPD‐based IgG‐MIP toward IgG as compared with the IgG‐MIPs generated from the other 2 monomers.  相似文献   

11.
A combinatorial screening procedure was used for the selection of polymer precursors in the preparation of molecularly imprinted polymer (MIP), which is useful in the detection of the air pollution marker molecule benzo[a]pyrene (BAP). Molecular imprinting is a technique for the preparation of polymer materials with specific molecular recognition receptors. The preparation of imprinted polymers requires polymer precursors such as functional monomer, cross-linking monomer, solvent, an initiator of polymerization and thermal or UV radiation. A virtual library of functional monomers was prepared based on interaction binding scores computed using HyperChem Release 8.0 software. Initially, the possible minimum energy conformation of the monomers and BAP were optimized using the semi-empirical (PM3) quantum method. The binding energy between the functional monomer and the template (BAP) was computed using the Hartree-Fock (HF) method with 6-31 G basis set, which is an ab initio approach based on Moller-Plesset second order perturbation theory (MP2). From the computations, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were selected for preparation of BAP imprinted polymer. The larger interaction energy (ΔE) represents possibility of more affinity binding sites formation in the polymer, which provides high binding capacity. The theoretical predictions were complimented through adsorption experiments. There is a good agreement between experimental binding results and theoretical computations, which provides further evidence of the validity of the usefulness of computational screening procedures in the selection of appropriate MIP precursors in an experiment-free way.  相似文献   

12.
Molecularly imprinted polymers (MIPs) prepared using an amide hydrogen-bonding functional monomer (acrylamide) exhibited efficient enantiomeric recognition properties in both organic and aqueous media in the HPLC mode. The results indicate that the amide functional groups formed strong hydrogen-bonding interactions with the template molecule, and specific recognition sites were created within the polymer matrix during the imprinting process. When Boc-L-Trp was used as the template, an MIP prepared in a polar organic solvent (acetonitrile) using acrylamide as the functional monomer showed better enantiomeric recognition of Boc-Trp than the MIPs prepared in the same solvent using an acidic (methacrylic acid) or a basic (2-vinylpyridine) functional monomer or a combination of an acidic and a basic functional monomer (methacrylic acid + 2-vinylpyridine). Our results indicate that in organic media the degree of retention of the sample molecule on the imprinted polymer was controlled by hydrogen-bonding interactions between the sample molecule and the polymer, while in aqueous media it was determined to a considerable extent by hydrophobic interactions. In both media the shape, size and the nature of the hydrogen-bonding groups of the sample molecules were all important factors in determining the enantiomeric and substrate selectivity. In the aqueous media, however, the hydrophobicity of the sample molecules was also found to play an important role.  相似文献   

13.
The technique of molecular imprinting allows the formation of specific recognition and catalytic sites in macromolecules via the use of templates. Molecularly imprinted polymers have been applied in an increasing number of applications where molecular binding events are of interest. These include the use of molecularly imprinted polymers as tailor-made separation materials, antibody and receptor binding site mimics in recognition and assay systems, enzyme mimics for catalytic applications and as recognition elements in biosensors. The stability and low cost of molecularly imprinted polymers make them advantageous for use in analysis as well as in industrial-scale production and application.  相似文献   

14.
Combinatorial methods in molecular imprinting   总被引:4,自引:0,他引:4  
Molecular imprinting is a general method for synthesizing robust, network polymers with highly specific binding sites for small molecules. Recently, combinatorial and computational approaches have been employed to select an optimal molecularly imprinted polymer (MIP) formulation for a targeted analyte. The use of MIPs in the combinatorial field, specifically their use for screening libraries of small molecules, has also been developed.  相似文献   

15.
Molecular imprinting is an attractive technique for preparing mimics of natural and biological receptors. Nevertheless, molecular imprinting for aqueous systems remains a challenge due to the hydrogen bonding between templates and functional monomers destroyed in the bulk water. The hydrogen bonding between templates and monomers are the most crucial factor governing recognition, particularly in non-covalent molecularly imprinted polymers. Using mesoporous materials for molecular imprinting is an effective approach to overcome this barrier and to remove the limitations of the traditional molecularly imprinted polymers which include incomplete template removal, small binding capacity, slow mass transfer, and irregular materials shape. Here, SBA-15 was used as a mesoporous silica material for synthesis of molecularly imprinted polypyrrole. The pyrrole monomers and template molecules were immobilized onto the SBA-15 hexagonal channels, and then polymerization occurred. The resulting nanocomposites were characterized by Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. In batch rebinding tests, the imprinted nanocomposites reached saturated adsorption within 100min and exhibited significant specific recognition toward the ascorbic acid (AA) with high adsorption capacity (83.7mgg(-1)). To further illustrate the recognition property of the imprinted nanocomposites, binary competitive and non-competitive adsorption experiments were performed with ascorbic acid, dopamine, paracetamol and epinephrine. The imprinting factors for these compounds in non-competitive adsorption experiments were 3.2, 1.5, 1.4 and 1.3, respectively. The results showed that the imprinted nanocomposites exhibited significant adsorption selectivity for the ascorbic acid against the related compounds.  相似文献   

16.
Molecular imprinted polymers (MIP) as a recognition element for sensors are increasingly of interest and MIP-quartz crystal microbalance (QCM) have started to appear in the literature. In this study, we have combined quartz crystal microbalance with MIP to prepare a sensor using the ability of glucose to chelate of copper (II) ion of methacrylamidohistidine (MAH) monomer to create ligand exchange (LE) assembled monolayer which is suitable for glucose determination. The study includes the measurement of binding interaction of molecularly imprinted QCM sensor via ligand interaction, investigation of the pH effect on frequency shift and recognition selectivity studies of glucose-imprinted polymer with respect to methyl-alpha-d-glucopyranoside and sucrose. Bmax (number of binding sites) and K(D) (dissociation constant of the metal-chelate copolymer) were also calculated using Scathard plot and the detection limit was found as 0.07 mM. MIP showed higher glucose-binding affinity than a well-known glucose binding protein, conconavalin A.  相似文献   

17.
A method for the selective detection of creatinine is reported, which is based on the reaction between polymerised hemithioacetal, formed by allyl mercaptan, o-phthalic aldehyde, and primary amine leading to the formation of fluorescent isoindole complex. This method has been demonstrated previously for the detection of creatine using creatine-imprinted molecularly imprinted polymers (MIPs) Since MIPs created using traditional methods were unable to differentiate between creatine and creatinine, a new approach to the rational design of a molecularly imprinted polymer (MIP) selective for creatinine was developed using computer simulation. A virtual library of functional monomers was assigned and screened against the target molecule, creatinine, using molecular modelling software. The monomers giving the highest binding score were further tested using simulated annealing in order to mimic the complexation of the functional monomers with template in the monomer mixture. The result of this simulation gave an optimised MIP composition. The computationally designed polymer demonstrated superior selectivity in comparison to the polymer prepared using traditional approach, a detection limit of 25 μM and good stability. The ‘Bite-and-Switch’ approach combined with molecular imprinting can be used for the design of assays and sensors, selective for amino containing substances.  相似文献   

18.
Although N-isopropylacrylamide (NIPAM) has previously been used in molecular imprinting, it has mostly been considered as an 'inert' monomer, or included for its temperature-responsive nature, rather than as a functional monomer responsible for the interactions with the template at the recognition site. A comparative study of NIPAM and other traditional, functional monomers for the imprinting of a hydrogen bond donor template, bisphenol A (BPA), is reported. Nuclear magnetic resonance titration data suggest that NIPAM forms a stronger complex with BPA than either acrylamide or methacrylic acid but a weaker complex than vinylpyridine. Molecular imprinted polymers (MIPs) were prepared using each functional monomer and compared as stationary phases for the separation of BPA from structural analogues. The NIPAM-containing MIP bound BPA with better selectivity than those prepared using acrylamide or methacrylic acid. Using NIPAM also reduces the nonspecific binding, which is found with MIPs using vinylpyridine as functional monomer.  相似文献   

19.
Novel molecularly imprinted polymer systems utilizing 4-vinylpyridine and 1-vinylimidazole as functional monomers have been developed for enantioselective recognition of carboxylic and N-protected amino acids. Non-covalent interactions between the functional monomers and the template molecules were the source of the subsequent recognition sites in the resultant polymers. The capacity of the polymers for molecular recognition was investigated by using them as stationary phases in the HPLC mode. Polymers prepared with 4-vinylpyridine were found to be more efficient in racemic resolution than those prepared with 1-vinylimidazole. When applying a racemic mixture of the template molecule, the polymers showed highest affinity for the enantiomer used as template. Imprints of a racemic template molecule, as expected, did not exhibit enantioselectivity. The optimal molar ratio of 4-vinylpyridine to the template Cbz-L -Asp-OH in the polymerization mixture was determined to be 12:1. In addition to enantioselectivity, the investigated polymers demonstrated ‘ligand selectivity’ e.g., a Cbz-L -Asp-OH-imprinted polymer was able to separate Cbz-D ,L -Asp-OH, but was unable to separate Cbz-D ,L -Glu-OH.  相似文献   

20.
Biomimetic testosterone receptors were synthesized via molecular imprinting for use as antibody mimics in immunoassays. As evaluated by radioligand binding assays, imprinted polymers prepared in acetonitrile were very specific for testosterone because the nonimprinted control polymers bound virtually no radiolabeled testosterone. The polymers present an appreciable affinity, with association constants of K(a) = 3.3 x 10(7) M(- 1) (high-affinity binding sites). The binding characteristics of the polymers were also evaluated in aqueous environment to study their viabilities as alternatives to antibodies in molecularly imprinted sorbent assays. Compared with the testosterone-specific antibodies present in commercial kits, our molecularly imprinted polymers are somewhat less sensitive but show a high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号