首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, sensitive method was developed for the quantification of the R- and S-enantiomers of ketoprofen and their acyl glucuronide conjugates in the plasma and dialysate of hemodialysis-dependent anephric patients. Unconjugated R- and S-ketoprofen plasma concentrations were determined directly by liquid chromatography using a S,S-Whelk-O1 chiral stationary phase. R- and S-Ketoprofen glucuronide for use as standards were resolved using a C18 reversed-phase HPLC column with a mobile phase containing the ion-pair reagent tetrabutylammonium hydrogen sulfate. Plasma glucuronides, however, could not be directly quantified due to matrix interference. Therefore, the glucuronides were isolated using reversed-phase HPLC and quantified after alkaline hydrolysis using the S,S-Whelk-O1 chiral stationary phase column.  相似文献   

2.
Treatment of 2,4-O-benzylidene-1,6-di-O-tosyl-D-glucitol (1) with potassium thiolbenzoate afforded the 6-S-benzoyl compound 2 and its 5-benzoate 4, the structure of which was proved chemically. When 1 was acetylated and then treated with the thiolate, the acetylated 6-S-benzoyl compound 19 was obtained in good yield in addition to some 1,6-di-S-benzoyl derivative 21. Treatment of 19 with acetic anhydride-acetic acid-sulfuric acid afforded 2,3,4,5-tetra-O-acetyl-6-S-acetyl-1-O-tosyl-D-glucitol (26), which was converted by sodium methoxide into a mixture of 1,5-anhydro-6-thio-D-glucitol (28) and 1,6-thioanhydro-D-glucitol (29). These two compounds were isolated as their acetates (30 and 31) by column chromatography, or by converting 28 into its S-trityl derivative (32).  相似文献   

3.
The 5-benzyl ether, 15, of a 1,2,4,5-pentanetetrol of known 2S configuration was made by a multistep synthesis from d-ribose. Ring-closure of the 1-O-tosyl derivative, 17, with retention of configuration, followed by oxidation, gave the 2S enantiomer, 22, of 2-benzyloxymethyl-4-oxotetrahydrofuran. The latter was converted by a hydantion synthesis into the 4-amino-4-carboxylic acid (mixture of 2S,4R and 2S,4S isomers, 28 and 29). Spontaneous lactonization of the 2S,4R diastereomer proved it to have the “cis” configuration. The remaining, 2S,4S diastereomer then must be “trans” it is identical with a natural compound recently isolated from an acid hydrolyzate of diabetic urine. In a parallel synthesis, the 4-O-mesyl derivative (de-O-isopropylidenated 19) was cyclized, with inversion at ring-position 2, leading after oxidation to the 2R enantiomer, 25, of the 4-oxotetrahydrofuran. The hydantoin synthesis this time yielded a mixture of the 2R,4R and 2R,4S amino-acids. Spontaneous lactonization of the latter showed it to have the “cis” configuration. Absolute configurations were assigned to the four optically active products, based on the known absolute configuration of d-ribose and the known mechanisms of the synthetic reactions.  相似文献   

4.
A simple and direct strategy to chemically synthesize O-β-d-glucuronides of urolithin-B 4, resveratrol 5, and the corresponding hydroxytyrosol derivatives 6, 7 (as a regioisomeric mixture), and 8 is described. The critical glycosylation step has been optimized using a structurally simple phenol, urolithin-B, by modification of several reaction parameters (solvent, promoter, and glucuronide donor). Very high yields have been obtained in the first synthesis of the O-β-d-glucuronide of urolithin-B 4. Extension of these reaction conditions was used for the synthesis of resveratrol-3-O-glucuronide 5 where a higher yield than previously reported was obtained by using the much more common trichloroacetimidate glucuronide donor. Finally, three O-β-d-glucuronides of hydroxytyrosol 6, 7, and 8 have been synthesized for the first time using chemical synthesis.  相似文献   

5.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

6.
Phytochemical research of Pteris multifida Poir. led to the isolation of fifteen compounds, including six flavonoids (16) and nine sesquiterpenoids (715). Their structures were characterized by NMR, MS, ORD and CD data. Compounds kaempferol 3-O-α-L-rhamnoside-7-O-β-D-glucoside (1), myricetin 3-O-β-D-glucoside (2), kaempferol 3-O-β-D-glucoside (4), luteolin-7-O-β-D-rutinoside (5), quercetin-3-O-α-L-rhamnopyranoside (6), (2S,3S)-12-hydroxypterosin Q (7), (2S,3S)-pterosin Q (8), 2-hydroxypterosin C (9) and (2S)-12-hydroxypterosin A (10) were first isolated from P. multifida, and compounds 12 and 10 were first isolated from the family Pteridaceae. Furthermore, the chemotaxonomic significance of the isolates was discussed.  相似文献   

7.
A new dihydrochalcone, 2‘,4‘-dihydroxy-3‘-methoxy-3,4-methylenedioxy-8-hydroxymethylene dihydrochalcone 1 and two new steroidal saponins, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 2, (25S)-ruscogenin-3-O-α-l-rhamnopyranosyl-(1  4)-β-d-glucopyranoside 3, together with three known steroidal saponins (25S)-ruscogenin-3-O-β-d-glucopyranoside 4, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 5 and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetrol-1-O-α-L-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 6 were isolated from the aerial parts of Sansevieria cylindrica. The structures of the new compounds were established by UV, IR, EI-MS, HR-ESI–MS as well as 1D (1H,13C and DEPT-135) and 2D (HSQC, HMBC and TOCSY) NMR spectral analysis. The isolated compounds 1-6 were assayed for in vitro cytotoxicities against the three human tumor cell lines HT116, MCF7 and HepG2. Compound 1 showed a moderate cytotoxicity against MCF7. Compounds 2, 3 and 6 exhibited moderate cytotoxicities against the three used cell lines and compound 5 showed marked cytotoxicities against all used cell lines.  相似文献   

8.
Three prenylflavanones, (2S)-5,7-dihydroxy-4′-methoxy-8-(3″,3″-dimethylallyl)flavanone (3), (2S)-5,4′-dihydroxy-7-methoxy-6-(3″,3″-dimethylallyl)flavanone (6), 8-prenylnaringenin (11), and a new epimeric pair (2″S/2″R)-(2S)-5,7-dihydroxy-4′-methoxy-6-(2″-hydroxy-3″-methylbut-3″-enyl)flavanones (4a/4b) were isolated together with taraxerone, taraxerol, epitaraxerol, β-sitosterol, oleanolic acid, 1-O-docosanoyl glycerol, apigenin, and apigenin 7-O-β-D-glucopyranoside from the MeOH extract of the leaves of Mallotus mollissimus. The structures of the isolated compounds were determined on the basis of 1D/2D NMR and HR-MS spectroscopic data; the 2S configuration of the prenylflavanones 3, 4, and 6 was deduced from CD spectroscopic data. The presence of three taraxerane triterpenoids reinforces the inclusion of M. mollissimus (syn. Croton mollissimus) in Mallotus genus. Among species of Mallotus the occurrence of the (2S)-prenylflavanones 3, 4, and 6 is confined to M. mollissimus.  相似文献   

9.
Previous work has shown that mono-oxygenation of Ru(bpy)2(N,N′-dimethyldithiocarbamate)+, 1, yields two different linkage isomers: S,S-bound 2a and O,S-bound 2b, as well as a stable dioxygenate, Ru(bpy)2(N,N-dimethylthiocarbamate-sulfinate-S,S)+, 3. In this report, the interconversion of the two peroxydithiocarbamate isomers was investigated using photolysis and thermal activations. The O,S-bound 2b undergoes phototriggered linkage isomerization to form the less stable S,S-bound 2a at low temperatures in non-coordinating solvents. The more reactive S,S-bound 2a then converts to O,S-bound 2b by a thermal isomerization at moderate temperatures in polar solvents. The different solvent and temperature dependences suggest distinct pathways for the two isomerizations.  相似文献   

10.
《Phytochemistry》1987,26(12):3301-3303
A new triterpene has been isolated from Simaba multiflora (Simaroubaceae) and determined to have the structure 3S,23R,25-trihydroxytirucall-7-en-24-one (1). Hispidol B was confirmed to be 3S,23S,24R,25-tetrahydroxytirucall-7-ene (2) by X-ray crystallographic analysis. Canthin-6-one, 8-O-methyl retusin and vanillic acid were also obtained in the course of this work.  相似文献   

11.
Phytochemical investigation on the whole plant of Anemone rivularis var. flore-minore led to the isolation of a new labdane-type diterpene glycoside (1) and a new trihydroxyfuranoid lignanoid glycoside (2), together with three known triterpene and triterpenoid glycosides (35). The structures of the two new compounds were elucidated as β-d-glucopyranosyl (13S)-13-hydroxy-7-oxo-labda-8,14-diene-18-oate (1) and (7S,7′R,8R,8′S)-7′-butoxy-7,9′-epoxy-4,4′,9-trihydroxy-3,3′-dimethoxylignane 9-O-β-d-glucopyranoside (2), on the basis of extensive spectral analysis and chemical evidence. Compound 1 is characterized by a glucose (Glc) esterified C-18 carboxyl group, which is a rarely encountered labdane-type diterpene glycoside in nature. The two new compounds (1 and 2) reported here are the first examples of diterpene glycoside and lignanoid glycoside found in the genus Anemone, and the known triterpene and triterpenoid glycosides (35) are identified for the first time from the title plant.  相似文献   

12.
To develop potential agents for slowing the progression of Alzheimer′s disease, two pairs of new enantiomeric lignans, including a couple of rarely 8′,9′-dinor-3′,7-epoxy-8,4′-oxyneolignanes named (7S, 8S)- and (7R, 8R)-pithecellobiumin A (1a/1b) and a pair of 2′,9′-epoxy-arylnaphthalenes named (7R, 8R, 8′R)- and (7S, 8S, 8′S)-pithecellobiumin B (2a/2b) were separated by chiral high performance liquid chromatography (HPLC). Their planar structures were elucidated by spectroscopic data analyses. The absolute configurations were determined by comparing of experimental and calculated electronic circular dichroism (ECD). The inhibitory activity on Aβ aggregation of all optical pure compounds was tested by ThT assay. Interestingly, enantiomeric inhibitors 1a (62.1%) and 1b (81.6%) exhibited different degrees of anti-Aβ aggregation activity. However, 2a (65.4%) and 2b (68.4%) showed similar inhibition rate. The different inhibition profiles were explained by molecular dynamics and docking simulation studies.  相似文献   

13.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

14.
Treatment of (Z)-3-deoxy-1,2:5,6-di-O-isopropylidine-3-C-(methoxycarbonyl)-methylene-α-d-ribo-hexofuranose (1) with diazomethane in ether afforded the unstable Δ1- and Δ2-pyrazolines 2 and 2a. High-pressure hydrogenation of the latter compounds over Raney nickel afforded a mixture of amines 3, 5, 7, and 9 (in 80% yield), which were separated by chromatography. Acetylation of these compounds yielded the N-acetyl derivatives 4, 6, 8, and 10. X-Ray analysis of compounds 8 and 10 showed them to be spiro-3,4′-(R)-(3-deoxy-1,2:5,6-di-O-isopropylidine-α-d-ribo-hexofuranose)-3′-(R)-[and 3′-(S)]-acetamido-2′-pyrrolidinone, respectively. The structures of compounds 4 and 6 (determined by chemical means) were the corresponding spiro-3,4′-(S)-3′-(R)-acetamido-2′-pyrrolidinone and 3′-(S)-acetamido-2′-pyrrolidinone, respectively.  相似文献   

15.
In the course of a chemotaxonomical study of Castanopsis species (Fagaceae), detailed investigation of the leaves of C. sclerophylla led to isolation of three new phenolic compounds together with 62 known compounds. The structures of the new compounds were elucidated as 2-O-galloyl-O-4,6-(S)-valoneoyl-d-glucose (1), 6-O-galloyl-1-O-vanilloyl-β-d-glucose (2), and 4″-O-galloylchestanin (3) by means of spectroscopic analyses and enzymatic hydrolysis with tannase. Comparison with other Castanopsis species indicated that C. sclerophylla characteristically accumulates chlorogenic acid and a dimeric ellagitannin, rugosin E. Triterpene hexahydroxydiphenoyl esters, which are major constituents of C. cuspidata var. sieboldii, C. hystrix, and C. fissa were not detected.  相似文献   

16.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

17.
2-(6-Aminohexanamido)ethyl 1-thio-β-d-galactopyranoside (5) and 1-thio-β-d-glucopyranoside (9) were prepared by the following scheme: 2,3,4,6-tetra-O-acetyl-1-thio-β-d-aldopyranoses, generated from 2-S-(2,3,4,6-tetra-O-acetyl-β-d-aldopyranosyl)-2-thiopseudourea hydrobromides, were aminoethylated with ethylenimine, followed by N-acylation of the products with 6-(trifluoroacetamido)hexanoic acid (1), and O-deacylation. These reactions could be carried out consecutively without isolation of intermediates, and the products obtained after gel chromatography were de(trifluoroacetyl)ated to obtain the final products. The chain lengths of the aglycons were further extended by repeating the acylation and the de(trifluoroacetyl)ation. An analog containing glycerol in lieu of a sugar was prepared by a similar reaction-scheme.  相似文献   

18.
Aerial parts of Capraria biflora L. were collected in Martinique (French West Indies) and extracted by methanol. Two original chlorinated iridoids, 3-hydroxymyopochlorin (1) and 5-hydroxyglutinoside (2) were isolated by CPC (centrifugal partition chromatography) and characterized from the extract together with five known iridoid glycosides (3–7), two flavonoid glucuronides (8–9) and the phenylethanoid glycoside verbascoside (10). The structure of these compounds together with their relative configuration was established by spectroscopic data including in particular 1D and 2D NMR experiments (HSQC, HMBC, NOESY) and HRESIMS. Preliminary antibacterial evaluation of 1, 2 and 3 against a panel of Gram-positive and Gram-negative strains has been performed.  相似文献   

19.
Microbial metabolism of cannflavin A and B isolated from Cannabis sativa   总被引:1,自引:0,他引:1  
Microbial metabolism of cannflavin A (1) and B (2), two biologically active flavonoids isolated from Cannabis sativa L., produced five metabolites (37). Incubation of 1 and 2 with Mucor ramannianus (ATCC 9628) and Beauveria bassiana (ATCC 13144), respectively, yielded 6″S,7″-dihydroxycannflavin A (3), 6″S,7″-dihydroxycannflavin A 7-sulfate (4) and 6″S,7″-dihydroxycannflavin A 4′-O-α-l-rhamnopyranoside (5), and cannflavin B 7-O-β-d-4?-O-methylglucopyranoside (6) and cannflavin B 7-sulfate (7), respectively. All compounds were evaluated for antimicrobial and antiprotozoal activity.  相似文献   

20.
The addition of a DNA methyltransferase inhibitor, 5-azacytidine, to Aspergillus sydowii fungus culture broth changed its secondary metabolites profile. Analysis of the culture broth extract led to the isolation of three new bisabolane-type sesquiterpenoids: (7S)-(+)-7-O-methylsydonol (1), (7S,11S)-(+)-12-hydroxysydonic acid (2) and 7-deoxy-7,14-didehydrosydonol (3), along with eight known compounds. The isolated compounds were evaluated for their anti-diabetic and anti-inflammatory activities. Among the isolates, (S)-(+)-sydonol (4) did not only potentiate insulin-stimulated glucose consumption but also prevented lipid accumulation in 3T3-L1 adipocytes. Additionally, (S)-(+)-sydonol (4) exhibited significant anti-inflammatory activity through inhibiting superoxide anion generation and elastase release by fMLP/CB-induced human neutrophils. This is the first report on isolating a secondary metabolite with anti-diabetic and anti-inflammatory activities from microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号