首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The glyoxalase system consisting of glyoxalase I (GloI) and glyoxalase II (GloII) constitutes a glutathione-dependent intracellular pathway converting toxic 2-oxoaldehydes, such as methylglyoxal, to the corresponding 2-hydroxyacids. Here we describe a complete glyoxalase system in the malarial parasite Plasmodium falciparum. The biochemical, kinetic and structural properties of cytosolic GloI (cGloI) and two GloIIs (cytosolic GloII named cGloII, and tGloII preceded by a targeting sequence) were directly compared with the respective isofunctional host enzymes. cGloI and cGloII exhibit lower K(m) values and higher catalytic efficiencies (k(cat)/K(m) ) than the human counterparts, pointing to the importance of the system in malarial parasites. A Tyr185Phe mutant of cGloII shows a 2.5-fold increase in K(m) , proving the contribution of Tyr185 to substrate binding. Molecular models suggest very similar active sites/metal binding sites of parasite and host cell enzymes. However, a fourth protein, which has highest similarities to GloI, was found to be unique for malarial parasites; it is likely to act in the apicoplast, and has as yet undefined substrate specificity. Various S-(N-hydroxy-N-arylcarbamoyl)glutathiones tested as P. falciparum Glo inhibitors were active in the lower nanomolar range. The Glo system of Plasmodium will be further evaluated as a target for the development of antimalarial drugs.  相似文献   

2.
Suppression of resistance to anticancer drugs by COTC of glyoxalase I (GloI) inhibitor targeting intracellular glutathione (GSH) and GloI was studied. Depletion of the cellular GSH content and inhibition of GloI by COTC increased chemotherapy-mediated apoptosis in apoptosis-resistant pancreatic adenocarcinoma AsPC-1 cells.  相似文献   

3.
Methylglyoxal was isolated as its 2,4-dinitrophenylosazone from an insoluble fraction from Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] needles but was not observed in a similar Douglas-fir needle callus preparation. This result was consistent with the distribution of enzymes of methylglyoxal metabolism between needles and needle callus. Only catabolic glyoxalases and methylglyoxal reductase could be found in the needle callus, whereas extracts of needles of various ages contained methylglyoxal synthetase and methylglyoxal reductase in a manner suggestive of a function for methylglyoxal in needle development and maturation. While glyoxalases I and II were active in all callus clones tested, activities of these enzymes were not immediately evident in needle extracts. However, it was demonstrated that at least small amounts of glyoxalase I occurred in needle extracts in an inhibited state. From the viewpoint that mature needles and needle callus represent resting and proliferative cellular states, respectively, the data indicate that methylglyoxal may be operating in conifers as a cell division inhibitor as envisioned by Szent-Gyorgyi.  相似文献   

4.
Aim: The purpose of this study was to investigate the behaviour of Saccharomyces cerevisiae in response to extracellular methylglyoxal. Methods and Results: Cell survival to methylglyoxal and the importance of phosphates was investigated. The role of methylglyoxal detoxification systems and methylglyoxal‐derived protein glycation were studied and the relation to cell survival or death was evaluated. Extracellular methylglyoxal decreased cell viability, and the presence of phosphate enhanced this effect. d ‐glucose seems to exert a protective effect towards this toxicity. Methylglyoxal‐induced cell death was not apoptotic and was not related to intracellular glycation processes. The glyoxalases and aldose reductase were important in methylglyoxal detoxification. Mutants lacking glyoxalase I and II showed increased sensitivity to methylglyoxal, while strains overexpressing these genes had increased resistance. Conclusions: Extracellular methylglyoxal induced non‐apoptotic cell death, being unrelated to glycation. Inactivation of methylglyoxal‐detoxifying enzymes by phosphate is one probable cause. Phosphate and d ‐glucose may also act through their complex involvement in stress response mechanisms. Significance and Impact of the Study: These findings contribute to elucidate the mechanisms of cell toxicity by methylglyoxal. This information could be useful to on‐going studies using yeast as a eukaryotic cell model to investigate methylglyoxal‐derived glycation and its role in neurodegenerative diseases.  相似文献   

5.
The crystal structures of protein SA0856 from Staphylococcus aureus in its apo-form and in complex with a Zn2+-ion have been presented. The 152 amino acid protein consists of two similar domains with α + β topology. In both crystalline state and in solution, the protein forms a dimer with monomers related by a twofold pseudo-symmetry rotation axis. A sequence homology search identified the protein as a member of the structural family Glyoxalase I. We have shown that the enzyme possesses glyoxalase I activity in the presence of Zn2+, Mg2+, Ni2+, and Co2+, in this order of preference. Sequence and structure comparisons revealed that human glyoxalase I should be assigned to a subfamily A, while S. aureus glyoxalase I represents a new subfamily B, which includes also proteins from other bacteria. Both subfamilies have a similar protein chain fold but rather diverse sequences. The active sites of human and staphylococcus glyoxalases I are also different: the former contains one Zn-ion per chain; the latter incorporates two of these ions. In the active site of SA0856, the first Zn-ion is well coordinated by His58, Glu60 from basic molecule and Glu40*, His44* from adjacent symmetry-related molecule. The second Zn3-ion is coordinated only by residue His143 from protein molecule and one acetate ion. We suggest that only single Zn1-ion plays the role of catalytic center. The newly found differences between the two subfamilies could guide the design of new drugs against S. aureus, an important pathogenic micro-organism.  相似文献   

6.
Glyoxalase II (GLY II), the second enzyme of glyoxalase pathway that detoxifies cytotoxic metabolite methylglyoxal (MG), belongs to the superfamily of metallo‐β‐lactamases. Here, detailed analysis of one of the uncharacterized rice glyoxalase II family members, OsGLYII‐2 was conducted in terms of its metal content, enzyme kinetics and stress tolerance potential. Functional complementation of yeast GLY II mutant (?GLO2) and enzyme kinetics data suggested that OsGLYII‐2 possesses characteristic GLY II activity using S‐lactoylglutathione (SLG) as the substrate. Further, Inductively Coupled Plasma Atomic Emission spectroscopy and modelled structure revealed that OsGLYII‐2 contains a binuclear Zn/Fe centre in its active site and chelation studies indicated that these are essential for its activity. Interestingly, reconstitution of chelated enzyme with Zn2+, and/or Fe2+ could not reactivate the enzyme, while addition of Co2+ was able to do so. End product inhibition study provides insight into the kinetics of GLY II enzyme and assigns hitherto unknown function to reduced glutathione (GSH). Ectopic expression of OsGLYII‐2 in Escherichia coli and tobacco provides improved tolerance against salinity and dicarbonyl stress indicating towards its role in abiotic stress tolerance. Maintained levels of MG and GSH as well as better photosynthesis rate and reduced oxidative damage in transgenic plants under stress conditions seems to be the possible mechanism facilitating enhanced stress tolerance.  相似文献   

7.
Potential inhibitors of the enzyme glyoxalase I from Escherichia coli have been evaluated using a combination of electrospray mass spectrometry and conventional kinetic analysis. An 11-membered library of potential inhibitors included a glutathione analogue resembling the transition-state intermediate in the glyoxalase I catalysis, several alkyl-glutathione, and one flavonoid. The E. coli glyoxalase I quaternary structure was found to be predominantly dimeric, as is the homologous human glyoxalase I. Binding studies by electrospray revealed that inhibitors bind exclusively to the dimeric form of glyoxalase I. Two specific binding sites were observed per dimer. The transition-state analogue was found to have the highest binding affinity, followed by a newly identified inhibitor; S-{2-[3-hexyloxybenzoyl]-vinyl}glutathione. Kinetic analysis confirmed that the order of affinity established by mass spectrometry could be correlated to inhibitory effects on the enzymatic reaction. This study shows that selective inhibitors may exist for the E. coli homologue of the glyoxalase I enzyme.  相似文献   

8.
Methylglyoxal is a ketoaldehyde that reacts readily under physiological conditions with biologically relevant ligands, such as amine and sulfhydryl groups. It is produced in mammalian cells primarily as a by-product of glycolysis. The level of glucose, L-glutamine and fetal bovine serum in culture media was found to significantly affect levels of intracellular methylglyoxal in Chinese hamster ovary cells. Medium with 25 mM glucose and 5 mM L-glutamine caused an increase in free methylglyoxal levels of 90 to 100% relative to medium containing 5 mM glucose and 2 mM L-glutamine. Both of these media compositions are representative of those found in commercially available media. Pseudomonas putida glyoxalase I was expressed in Chinese hamster ovary cells to enhance methylglyoxal detoxification. The Chinese hamster ovary cell clones showed an 80 to 90% decrease in free methylglyoxal levels. The colony-forming ability of these cells was compared to wild-type Chinese hamster ovary cells under conditions found to cause elevated methylglyoxal levels. The wild-type cells showed a 10% decrease in colony-forming ability relative to the clones. This decrease was found to be statistically significant (P>0.99) by analysis of variance. The variation in colony-forming ability amongst the clones was statistically insignificant. More importantly, the clones shoed increased colony-forming ability relative to the wild-type cells under conditions of higher methylglyoxal production with fair to good statistical significance (P>0.75 to P>0.95). This result is the first quantifiable evidence that endogenously produced methylglyoxal can negatively affect cell function under conditions found in animal cell culture.Abbreviations ANOVA analysis of variance - CHO Chinese hamster ovary cells - CFA colony-forming ability - dhfr gene for dihydrofolate reductase - DHAP dihydroxyacetone phosphate - FBS fetal bovine serum - G-3-P glyceraldehyde-3-phosphate - GloI glyoxalase I - GloII glyoxalase II - GSH reduced glutathione - HPLC high-performance liquid chromatography - IMDM Iscove's modified Dulbecco's medium - MTX methotrexate - 2-MQ 2-methylquinoxaline - 5-MQ 5-methylquinoxaline - MEM minimal essential medium - Pi inorganic phosphate - PCA perchloric acid - o-PD o-phenylenediamine  相似文献   

9.
Methylglyoxal (MG) is a toxic by‐product of glycolysis that damages DNA and proteins ultimately leading to cell death. Protection from MG is often conferred by a glutathione‐dependent glyoxalase pathway. However, glutathione is absent from the low‐GC Gram‐positive Firmicutes, such as Bacillus subtilis. The identification of bacillithiol (BSH) as the major low‐molecular‐weight thiol in the Firmicutes raises the possibility that BSH is involved in MG detoxification. Here, we demonstrate that MG can rapidly and specifically deplete BSH in cells, and we identify both BSH‐dependent and BSH‐independent MG resistance pathways. The BSH‐dependent pathway utilizes glyoxalase I (GlxA, formerly YwbC) and glyoxalase II (GlxB, formerly YurT) to convert MG to d ‐lactate. The critical step in this pathway is the activation of the KhtSTU K+ efflux pump by the S‐lactoyl‐BSH intermediate, which leads to cytoplasmic acidification. We show that cytoplasmic acidification is both necessary and sufficient for maximal protection from MG. Two additional MG detoxification pathways operate independent of BSH. The first involves three enzymes (YdeA, YraA and YfkM) which are predicted to be homologues of glyoxalase III that converts MG to d ‐lactate, and the second involves YhdN, previously shown to be a broad specificity aldo‐keto reductase that converts MG to acetol.  相似文献   

10.
Summary The enzymatic production of S-lactoylglutathione was studied by applying glyoxalase I to glycerol-grown cells of Saccharomyces cerevisiae and Escherichia coli cells dosed with Pseudomonas putida glyoxalase I gene. The glyoxalase I in S. cerevisiae cells was markedly induced when the cells were grown on glycerol. The activity of the enzyme in glycerol-grown cells was more than 20-fold higher compared with that of the glucose-grown cells. By using extracts of glycerol-grown yeast cells, about 5 mmol/1 (2 g/l) of S-lactoylglutathione was produced from 10 mM methylglyoxal and 50 mM glutathione within 1 h. The extracts of E. coli cells carrying a hybrid plasmid pGI423, which contains P. putida glyoxalase I gene, showed approximately 170-fold higher glyoxalase I activity than that of E. coli cells without pGI423. The extracts were used for production of S-lactoylglutathione and, under optimal conditions, about 40 mmol/l (15 g/l) of S-lactoylglutathione was produced from 50 mM methylglyoxal and 100mM glutathione within 1 h.  相似文献   

11.
Toxoplasma gondii is an obligatory intracellular apicomplexan parasite which exploits host cell surface components in cell invasion and intracellular parasitization. Sulfated glycans such as heparin and heparan sulfate have been reported to inhibit cell invasion by T. gondii and other apicomplexan parasites such as Plasmodium falciparum. The aim of this study was to investigate the heparin‐binding proteome of T. gondii. The parasite‐derived components were affinity‐purified on the heparin moiety followed by MS fingerprinting of the proteins. The heparin‐binding proteins of T. gondii and P. falciparum were compared based on functionality and affinity to heparin. Among the proteins identified, the invasion‐related parasite ligands derived from tachyzoite/merozoite surface and the secretory organelles were prominent. However, the profiles of the proteins were different in terms of affinity to heparin. In T. gondii, the proteins with highest affinity to heparin were the intracellular components with functions of parasite development contrasted to that of P. falciparum, of which the rhoptry‐derived proteins were prominently identified. The profiling of the heparin‐binding proteins of the two apicomplexan parasites not only explained the mechanism of heparin‐mediated host cell invasion inhibition, but also, to a certain extent, revealed that the action of heparin on the parasite extended after endocytosis.  相似文献   

12.
Estimating genetic diversity and inferring the evolutionary history of Plasmodium falciparum could be helpful in understanding origin and spread of virulent and drug‐resistant forms of the malaria pathogen and therefore contribute to malaria control programme. Genetic diversity of the whole mitochondrial (mt) genome of P. falciparum sampled across the major distribution ranges had been reported, but no Indian P. falciparum isolate had been analysed so far, even though India is highly endemic to P. falciparum malaria. We have sequenced the whole mt genome of 44 Indian field isolates and utilized published data set of 96 genome sequences to present global genetic diversity and to revisit the evolutionary history of P. falciparum. Indian P. falciparum presents high genetic diversity with several characteristics of ancestral populations and shares many of the genetic features with African and to some extent Papua New Guinean (PNG) isolates. Similar to African isolates, Indian P. falciparum populations have maintained high effective population size and undergone rapid expansion in the past with oldest time to the most recent common ancestor (TMRCA). Interestingly, one of the four single nucleotide polymorphisms (SNPs) that differentiates P. falciparum from P. falciparum‐like isolates (infecting non‐human primates in Africa) was found to be segregating in five Indian P. falciparum isolates. This SNP was in tight linkage with other two novel SNPs that were found exclusively in these five Indian isolates. The results on the mt genome sequence analyses of Indian isolates on the whole add to the current understanding on the evolutionary history of P. falciparum.  相似文献   

13.
Methylglyoxal (MG), a highly reactive dicarbonyl derived from metabolic processes, is the most powerful precursor of advanced glycation end products (AGEs). Glycative stress has been recently associated with ovarian dysfunctions in aging and PCOS syndrome. We have investigated the role of the NAD+-dependent Class III deacetylase SIRT1 in the adaptive response to MG in mouse oocytes and ovary. In mouse oocytes, MG induced up-expression of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) genes, components of the main MG detoxification system, whereas inhibition of SIRT1 by Ex527 or sirtinol reduced this response. In addition, the inhibition of SIRT1 worsened the effects of MG on oocyte maturation rates, while SIRT1 activation by resveratrol counteracted MG insult. Ovaries from female mice receiving 100 mg/kg MG by gastric administration for 28 days (MG mice) exhibited increased levels of SIRT1 along with over-expression of catalase, superoxide dismutase 2, SIRT3, PGC1α and mtTFA. Similar levels of MG-derived AGEs were observed in the ovaries from MG and control groups, along with enhanced protein expression of glyoxalase 1 in MG mice. Oocytes ovulated by MG mice exhibited atypical meiotic spindles, a condition predisposing to embryo aneuploidy. Our results from mouse oocytes revealed for the first time that SIRT1 could modulate MG scavenging by promoting expression of glyoxalases. The finding that up-regulation of glyoxalase 1 is associated with that of components of a SIRT1 functional network in the ovaries of MG mice provides strong evidence that SIRT1 participates in the response to methylglyoxal-dependent glycative stress in the female gonad.  相似文献   

14.
Glyoxalase I (EC 4.4.1.5) was purified from human red blood cells by a simplified method using S-hexylglutathione affinity chromatography with a modified concentration gradient of S-hexylglutathione for elution. The pure protein had a specific activity of 1830 U/mg of protein, where the overall yield was 9%. The pure protein had a molecular mass of 46,000 D, comprised of two subunits of 23,000 D each, and an isoelectric point value of 5.1. TheK M value for methylglyoxal-glutathione hemithioacetal was 192±8 µM and thek cat value was 10.9±0.2 × 104 min–1 (N = 15). The glyoxalase I inhibitor S-p-bromobenzylglutathione had aK i value of 0.16±0.04 µM and S-p-nitrobenzoxycarbonylglutathione, previously thought to inhibit only glyoxalase II, also inhibited glyoxalase I with aK i value of 3.12±0.88 µM. Reduced glutathione was a weak competitive inhibitor of glyoxalase I with aK i value of 18±8 mM. The polyclonal antibodies were raised to the purified enzyme and were found to react specifically with glyoxalase I antigen by immunoblotting. This procedure gave a protein of high purity with simple low pressure chromatographic techniques with a moderate but adequate yield for small-scale preparations.  相似文献   

15.
Glyoxalase pathway, ubiquitously found in all organisms from prokaryotes to eukaryotes, consists of glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, which detoxify a cytotoxic molecule, methylglyoxal (MG). Increase in MG has been correlated with various diseases in humans and different abiotic stresses in plants. We have previously shown that overproduction of GLY I and/or GLY II enzymes in transgenic plants provide tolerance towards salinity and heavy metal stresses. We have identified nineteen potential GLY I and four GLY II proteins in rice and twenty two GLY I and nine GLY II proteins in Arabidopsis. An analysis of complete set of genes coding for the glyoxalase proteins in these two genomes is presented, including classification and chromosomal distribution. Expression profiling of these genes has been performed in response to multiple abiotic stresses, in different tissues and during various stages of vegetative and reproductive development using publicly available databases (massively parallel signature sequencing and microarray). AtGLYI8, OsGLYI3, and OsGLYI10 expresses constitutively high in seeds while AtGLYI4, AtGLYI7, OsGLYI6, and OsGLYI11 are highly stress inducible. To complement this analyses, qRT-PCR is performed in two contrasting rice genotypes, i.e., IR64 and Pokkali where OsGLYI6 and OsGLYI11 are found to be highly stress inducible.  相似文献   

16.
A comparative study on glyoxalase II from vertebrata   总被引:1,自引:0,他引:1  
S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from the liver of animals belonging to the various vertebrate classes (Oryctolagus cuniculus, Gallus gallus, Python molurus, Rana esculenta, Esox lucius) have been purified from 100,000 g supernatants of liver homogenates, using acetone fractionation and affinity chromatography. Subsequent comparative studies were concerned with some molecular and kinetic properties. Isoelectric focusing gave evidence for a single form of liver glyoxalase II in O. cuniculus, P. molurus and E. lucius, while the enzyme from G. gallus and R. esculenta showed respectively two and three forms with different pI values. All studied enzymes are basic proteins. The relative molecular mass values range from 18,000 to 23,000. The various glyoxalases II do not display markedly different Kn or Ki values. Their stability behavior at different temperatures is also quite similar.  相似文献   

17.
Egress of Plasmodium falciparum merozoites from host erythrocytes is a critical step in multiplication of blood‐stage parasites. A cascade of proteolytic events plays a major role in degradation of membranes leading to egress of merozoites. However, the signals that regulate the temporal activation and/or secretion of proteases upon maturation of merozoites in intra‐erythrocytic schizonts remain unclear. Here, we have tested the role of intracellular Ca2+ in regulation of egress of P. falciparum merozoites from schizonts. A sharp rise in intracellular Ca2+ just before egress, observed by time‐lapse video microscopy, suggested a role for intracellular Ca2+ in this process. Chelation of intracellular Ca2+ with chelators such as BAPTA‐AM or inhibition of Ca2+ release from intracellular stores with a phospholipase C (PLC) inhibitor blocks merozoite egress. Interestingly, chelation of intracellular Ca2+ in schizonts was also found to block the discharge of a key protease PfSUB1 (subtilisin‐like protease 1) from exonemes of P. falciparum merozoites to parasitophorous vacuole (PV). This leads to inhibition of processing of PfSERA5 (serine repeat antigen 5) and a block in parasitophorous vacuolar membrane (PVM) rupture and merozoite egress. A complete understanding of the steps regulating egress of P. falciparum merozoites may provide novel targets for development of drugs that block egress and limit parasite growth.  相似文献   

18.
Indole compounds are involved in a range of functions in many organisms. In the human malaria parasite Plasmodium falciparum, melatonin and other tryptophan derivatives are able to modulate its intraerythrocytic cycle, increasing the schizont population as well as parasitemia, likely through ubiquitin‐proteasome system (UPS) gene regulation. In plants, melatonin regulates root development, in a similar way to that described for indoleacetic acid, suggesting that melatonin and indoleacetic acid could co‐participate in some physiological processes due to structural similarities. In the present work, we evaluate whether the chemical structure similarity found in indoleacetic acid and melatonin can lead to similar effects in Arabidopsis thaliana lateral root formation and P. falciparum cell cycle modulation, as well as in the UPS of gene regulation, by qRT‐PCR. Our data show that P. falciparum is not able to respond to indoleacetic acid either in the modulation of the intraerythrocytic cycle or in the gene regulation mediated by the UPS as observed for melatonin. The similarities of these indole compounds are not sufficient to confer synergistic functions in P. falciparum cell cycle modulation, but could interplay in A. thaliana lateral root formation.  相似文献   

19.
Malaria parasites of the genus Plasmodium have developed sophisticated mechanisms to benefit from the nutrient-rich environments of their hosts. For example, by hiding in red blood cells, they found a secure way to tap into the glucose supply of vertebrates. The high-power metabolism of Plasmodium leads not only to a significantly increased glucose consumption of infected erythrocytes, but also to an elevated production of D-lactate from methylglyoxal. The latter substance is a harmful by-product from glycolysis that is detoxified by the ubiquitous glyoxalase system. This system consists of reduced glutathione and two enzymes, the glyoxalases 1 and 2. Inhibition of the glyoxalases in the host/parasite unit is expected to be highly detrimental to the parasite. Moreover, by studying Plasmodium isozymes, physiological functions of the system beyond methylglyoxal conversion became prima facie obvious: (i) the two different active sites of glyoxalase 1 as well as the existence of (insular) glyoxalases in the apicoplast point to alternative substrates and metabolic pathways. (ii) The allostery of glyoxlase 1 and the monomer-dimer equilibrium of glyoxalase 2 suggest novel regulatory features of these enzymes. Here we review the current knowledge on the glyoxalase systems of the host/parasite unit, discuss their potential as drug target and summarize new hypotheses on glyoxalases with respect to general cell biology.  相似文献   

20.
Cytoadhesion of Plasmodium falciparum‐infected erythrocytes to endothelial protein C receptor (EPCR) is associated with severe malaria. It has been postulated that parasite binding could exacerbate microvascular coagulation and endothelial dysfunction in cerebral malaria by impairing the protein C–EPCR interaction, but the extent of binding inhibition has not been fully determined. Here we expressed the cysteine‐rich interdomain region (CIDRα1) domain from a variety of domain cassette (DC) 8 and DC13 P. falciparum erythrocyte membrane protein 1 proteins and show they interact in a distinct manner with EPCR resulting in weak, moderate and strong inhibition of the activated protein C (APC)–EPCR interaction. Overall, there was a positive correlation between CIDRα1–EPCR binding activity and APC blockade activity. In addition, our analysis from a combination of mutagenesis and blocking antibodies finds that an Arg81 (R81) in EPCR plays a pivotal role in CIDRα1 binding, but domains with weak and strong APC blockade activity were distinguished by their sensitivity to inhibition by anti‐EPCR mAb 1535, implying subtle differences in their binding footprints. These data reveal a previously unknown functional heterogeneity in the interaction between P. falciparum and EPCR and have major implications for understanding the distinct clinical pathologies of cerebral malaria and developing new treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号