首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple high-performance liquid chromatographic (HPLC) method was developed for the determination of losartan and its E-3174 metabolite in human plasma, urine and dialysate. For plasma, a gradient mobile phase consisting of 25 mM potassium phosphate and acetonitrile pH 2.2 was used with a phenyl analytical column and fluorescence detection. For urine and dialysate, an isocratic mobile phase consisting of 25 mM potassium phosphate and acetonitrile (60:40, v/v) pH 2.2 was used. The method demonstrated linearity from 10 to 1000 ng/ml with a detection limit of 1 ng/ml for losartan and E-3174 using 10 μl of prepared plasma, urine or dialysate. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of losartan in patients with kidney failure undergoing continuous ambulatory peritoneal dialysis (CAPD).  相似文献   

2.
A sensitive method using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) was developed and validated for the analysis of antihistamine drug azatadine in human plasma. Loratadine was used as internal standard (IS). Analytes were extracted from human plasma by liquid/liquid extraction using ethyl acetate. The organic phase was reduced to dryness under a stream of nitrogen at 30 °C and the residue was reconstituted with the mobile phase. 5 μL of the resulting solution was injected onto the LC-MS/MS system. A 4.6 mm × 150 mm, I.D. 5 μm, Agilent TC-C(18) column was used to perform the chromatographic analysis. The mobile phase consisted of ammonium formate buffer 0.010 M (adjusted to pH 4.3 with 1M formic acid)/acetonitrile (20:80, v/v) The chromatographic run time was 5 min per injection and flow rate was 0.6 mL/min. The retention time was 2.4 and 4.4 min for azatadine and IS, respectively. The tandem mass spectrometric detection mode was achieved with electrospray ionization (ESI) iron source and the multiple reaction monitoring (MRM) (291.3 → 248.2m/z for azatadine, 383.3 → 337.3m/z for IS) was operated in positive ion modes. The low limit of quantitation (LLOQ) was 0.05 ng/mL. The intra-day and inter-day precision of the quality control (QC) samples was 8.93-11.57% relative standard deviation (RSD). The inter-day accuracy of the QC samples was 96.83-105.07% of the nominal values.  相似文献   

3.
An assay using nonsuppressed (single-column) anion chromatography was developed to determine the concentration of inorganic sulfate in biologic fluids. A conventional HPLC system with an anion-exchange column and conductimetric detector interfaced with an automatic injector and integrator was used. The mobile phase for the chromatography of urine and serum samples is 4 mM potassium hydrogen phthalate, pH 4.5, and potassium iodide is used as the internal standard. For cerebrospinal fluid samples, the mobile phase is modified by addition of 10% of a 4 mM phthalic acid solution. Results of the HPLC assay were found to correlate well (r = 0.991 and 0.999) with those of two commonly used spectrophotometric methods for urine and serum inorganic sulfate determinations. However, the concentrations determined by ion chromatography were 2.5 to 10% lower, possibly due to less assay interference by other substances following chromatographic separation of sulfate. Anion chromatography using a single-column system is a convenient and relatively inexpensive method with sufficient sensitivity for the determination of inorganic sulfate concentrations in urine, serum, and cerebrospinal fluid.  相似文献   

4.
A high-performance liquid chromatographic method for determination of amodiaquine (AQ), desethylamodiaquine (DAQ), chloroquine (CQ) and desethylchloroquine (DCQ) in human whole blood, plasma and urine is reported. 4-(4-Dimethylamino-1-methylbutylamino)-7-chloroquinoline was used as internal standard. The drugs and the internal standard were extracted into di-isopropyl ether as bases and then re-extracted into an acidic aqueous phase with 0.1 M phosphate buffer at pH 4.0 for AQ samples and at pH 2.5 for CQ filter paper samples. A C(18) column was used and the mobile phase consisted of methanol-phosphate buffer (0.1 M, pH 3)-perchloric acid (250: 747.5:2.5, v/v). The absorbance of the drugs was monitored at 333 nm and no endogenous compound interfered at this wavelength. The limit of quantification in whole blood, plasma and urine was 100 nM for AQ and DAQ (sample size 100 microliter) as well as for CQ and DCQ in blood samples dried on filter paper. For 1000 microliter AQ and DAQ samples, the limit of quantification was 10 nM in all three biological fluids. The within-assay and between-assay coefficients of variations were always <10% at the limits of quantification. Plasma should be preferred for the determination of AQ and DAQ since use of whole blood may be associated with stability problems.  相似文献   

5.
A rapid gas–liquid chromatographic assay is developed for the quantification of methadone (Mtd) and its major metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), in biological fluids of opiate addicts. After alkaline extraction from samples with lidocaine hydrochloride as internal standard, Mtd and EDDP are separated on SP-2250 column at 220°C and detected with a thermionic detector. The chromatographic time is about 6 min. The relative standard deviations (R.S.D.) of Mtd and EDDP standards are between 1.5 and 5.5%. Most drugs of abuse (morphine, codeine, narcotine, cocaine, benzoylecgonine, cocaethylene, dextropropoxyphene etc) are shown not to interfere with this technique. The method has been applied to study the levels of Mtd and EDDP metabolite in serum, saliva and urine of patients under maintenance treatment for opiate dependence. EDDP levels were found higher than those of Mtd in urine samples from four treated patients, but lower in serum and undetectable in saliva. However, Mtd concentrations were higher in saliva than in serum.  相似文献   

6.
Identification, separation and quantitation of iodoaminoacids, is essential for the biological research and the clinical diagnosis of thyroid gland disease. Under this aspect a reversed-phase high-performance liquid chromatographic method was developed for the determination of thyroid gland hormones and some of their primary metabolites, 3,3',5,5'-tetra-iodo-L-thyronine (L-thyroxine), 3,3',5-tri-iodo-L-thyronine, 3,5-di-iodo-L-thyronine, L-thyronine, 3,5-di-iodo-L-tyrosine, 3-iodo-L-tyrosine and l-tyrosine. Analysis was performed on an Inertsil C(18) column with photodiode-array detection, using a 25 min gradient scale program of a binary mobile phase consisted of 0.1% aqueous solution of trifluoroacetic acid at pH 3 as solvent A and acetonitrile as solvent B, at a flow rate of 1 mL/min. Quantitation was performed using were obtained using theophylline as internal standard. The method was applied to commercial pharmaceuticals and biological samples (serum, urine and tissue). Drug-free urine and serum samples were spiked with known concentrations of the analytes standards and pretreated by solid phase extraction to remove matrix interferences. C(18) cartridges were used, yielding recoveries ranging from 87.1% to 107.6% for serum samples and from 92.1% to 98.7% for urine samples. With regard to total-T(4) concentrations in serum samples, results are cross-validated with RIA and found to agree well.  相似文献   

7.
A validated high performance liquid chromatographic assay for urinary catecholamines is presented. After addition of 3,4-dihydroxybenzylamine as internal standard (IS) to urine, norepinephrine (NE), epinephrine (E), dopamine (DA) are extracted by ion exchange chromatography and eluted with boric acid. After paired ion separation, quantitation is by electrochemical (coulometric) detection after correction of internal standard recovery. Novel interferences by anti-TB drugs on norepinephrine assay are discussed. A simple method for their removal using alumina is presented.  相似文献   

8.
An accurate, sensitive, selective and reproducible high-performance liquid chromatographic method with coulometric detection for the determination of cyclizine and its inactive demethylated metabolite, norcyclizine, in biological fluids has been developed. The drugs were separated using a custom packed reversed-phase C18 analytical column and phosphate buffer (0.05 M, pH 3)-acetonitrile (7:3) as mobile phase. The dual electrode coulometric detector was operated in the “oxidative-screen” mode with the upstream electrode (detector 1) set at 0.55 V and the downstream electrode (detector 2) set at 0.90 V. Serum and urine samples were prepared for analysis by solid-phase extraction, followed by a simple phase-separation step. The limit of quantitation was 1 ng/ml for both cyclizine and norcyclizine in serum and urine.  相似文献   

9.
An improved reverse-phase high-performance liquid chromatographic method (RP-HPLC) for the determination of a novel iron chelator CP502 (1,6-dimethyl-3-hydroxy-4-(1H)-pyridinone-2-carboxy-(N-methyl)-amide hydrochloride) in rat plasma, urine and feces was developed and validated. The separation was performed on a polymeric column using a mobile phase composed of 1mM ethylenediaminetetra-acetic acid disodium salt (EDTA), acetonitrile, methanol and methylene chloride. Separation of CP502 from plasma, urine or feces endogenous compounds was achieved by gradient elution. Retention times of CP502 and its major metabolite (glucuronide) were about 13 and 4 min, respectively. The method was validated in terms of limit of detection (LOD), limit of quantification (LOQ), selectivity (endogenous from plasma, urine or feces), linearity, extraction recovery, robustness (column selection, mobile phase composition, detection mode, internal standard (IS) selection, analyte stability), day-to-day reproducibility and system suitability (repeatability, peak symmetry and resolution). The method is applicable to bioavailability and pharmacokinetic studies of CP502 in rats.  相似文献   

10.
A liquid chromatographic method with photometric detection for the determination of cilazapril and its active metabolite and degradation product cilazaprilat in urine and pharmaceuticals has been developed. The chromatographic method consisted of a μBondapak C18 column maintained at 30±0.2°C, using a mixture of methanol-10 mM phosphoric acid (50:50 v/v) as mobile phase at a flow-rate of 1.0 ml/min. Enalapril maleate was used as internal standard. The detection was performed at a wavelength of 206 nm. A study of the retention of cilazapril and cilazaprilat using solid–liquid extraction has been carried out in order to optimise the clean-up procedure for urine samples, which consisted of a solid–liquid extraction using C8 cartridges. Recoveries greater than 85% are obtained for both compounds. The method was sensitive, precise and accurate enough to be applied to the determination of urine samples obtained from three hypertensive patients up to 24 h after intake of a therapeutic dose (detection limit of 70 ng/ml for cilazapril and cilazaprilat in urine). A comparison of the method developed using photometric and amperometric detection has been carried out.  相似文献   

11.
An improved, rapid and specific high-performance liquid chromatographic assay was developed for the determination of famotidine in human plasma and urine. Plasma samples were alkalinized and the analyte and internal standard (cimetidine) extracted with water-saturated ethyl acetate. The extracts were reconstituted in mobile phase, and injected onto a C18 reversed-phase column; UV detection was set at 267 nm. Urine samples were diluted with nine volumes of a mobile phase-internal standard mixture prior to injection. The lower limits of quantification in plasma and urine were 75 ng/ml and 1.0 μg/ml, respectively; intra- and inter-day coefficients of variation were ≤10.5%. This method is currently being used to support renal function studies assessing the use of intravenously administered famotidine to characterize cationic tubular secretion in man.  相似文献   

12.
A simple, accurate and precise high-performance liquid chromatographic method was developed and validated for the determination of trovafloxacin, a new quinolone antibiotic, in serum and urine. Following solid-phase extraction, chromatographic separation was accomplished using a C18 column with a mobile phase consisting of 0.04 M H3PO4-acetonitrile-tetrabutylammonium hydroxide-0.005 M dibutyl amine phosphate (D-4) reagent (83:16.85:0.05:0.1, v/v), pH 3. Trovafloxacin and the internal standard (a methyl derivative of trovafloxacin) were detected by ultraviolet absorbance at 275 nm. The lower limit of quantification for trovafloxacin was 0.1 μg/ml and the calibration curves were linear over a concentration range of 0.1 to 20..0 μg/ml (r2 = 0.9997). The average recoveries were greater than 70% for both trovafloxacin and internal standard. The intra-day and inter-day coefficients of variation were generally less than 5% in urine and serum over the concentration range of 0.1 to 20.0 μg/ml. Human serum samples could be stored for up to 12 months at −20°C and urine samples could be stored up to 18 months at −80°C.  相似文献   

13.
A sensitive, selective and reproducible reversed-phase high-performance liquid chromatographic method is described for the quantification of sotalol in human serum and urine. Sotalol and the internal standard, atenolol, were extracted from alkalinized serum and urine (pH 9.0) into 1-butanol—chloroform (20:60, v/v). The organic phase was evaporated, and to the residue was added 0.1 M sulphuric acid (serum analysis) or mobile phase (urie analysis). The mobile phase consisted of 0.01 M phosphate buffer (pH 3.2) and acetonitrile (20:80, v/v) containing 3 mM n-octylsodium sulphate. The flow-rate was 1.5 ml/min. The retention times of atenolol and sotalol were 7 and 10 min, respectively. Ultraviolet detection at 226 nm made it possible to achieve a detection limit of 0.03 μmol/l.  相似文献   

14.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A method was developed for the rapid quantitative analysis of chlorpheniramine in plasma, saliva and urine using high-performance liquid chromatography. A diethyl ether or hexane extract of the alkalinized biological samples was extracted with dilute acid which was chromatographed on a reversed-phase column using mixtures of acetonitrile and ammonium phosphate buffer as the mobile phase. Ultraviolet absorption at 254 nm was monitored for the detection and brompheniramine was employed as the internal standard for the quantitation. The effects of buffer, pH, and acetonitrile concentration in the mobile phase on the chromatographic separation were investigated. A mobile phase 20% acetonitrile in 0.0075 M phosphate buffer at a flow-rate of 2 ml/min was used for the assays of plasma and saliva samples. A similar mobile phase was used for urine samples. The drug and internal standard were eluted at retention volumes of less than 17 ml. The method can also be used to quantify two metabolites, didesmethyl- and desmethylchlorpheniramine, in the urine. The method can accurately measure chlorpheniramine levels down to 2 ng/ml in plasma or saliva using 1 ml of sample, and should be adequate for biopharmaceutical and pharmacokinetic studies. Various precautions for using the assay are discussed.  相似文献   

16.
A simple and sensitive method for the enantioselective high-performance liquid chromatographic determination of methadone and its main metabolite, EDDP, in human urine is described. (−)-(R)-Methadone, (+)-(S)-methadone, (+)-(R)-EDDP, (−)-(S)-EDDP and imipramine as an internal standard are detected by ultraviolet detection at 200 nm. The enantiomers of methadone and EDDP were extracted from human urine by a simple liquid–liquid extraction procedure. The extracted sample was reconstructed in mobile phase and the enantiomers of methadone and EDDP were quantitatively separated by HPLC on a short analytical LiChrospher RP8 column coupled in series with a chiral AGP column. Determination of all four enantiomers was possible in the range of 0.03 to 2.5 μM. The recoveries of methadone enantiomers and EDDP enantiomers added to human urine were about 90% and 80%, respectively. The method was applicable for determination of methadone enantiomers and the enantiomers of its main metabolite in urine samples from methadone maintenance patients and patients suffering from severe chronic pain.  相似文献   

17.
A sensitive and selective high-performance liquid chromatographic method for the simultaneous determination of a new angiotensin II receptor blocking agent, losartan (DuP 753, MK-954, I), and its active metabolite, EXP3174 (II), in human plasma or urine is described. The two analytes and internal standard are extracted from plasma and urine at pH 2.5 by liquid—liquid extraction and analyzed on a cyano column with ultraviolet detection at 254 nm. The mobile phase is composed of acetonitrile and phosphate buffer at pH 2.5. The limit of quantification for both compounds in plasma is 5 ng/ml. The limit in urine is 20 and 10 ng/ml for I and II, respectively. The assay described has been successfully applied to samples from pharmacokinetic studies.  相似文献   

18.
A sensitive high-performance liquid chromatographic method for a routine assay of nadolol in serum is described. Serum samples spiked with atenolol (internal standard) were extracted with diethyl ether. After centrifugation, the organic layer was evaporated to dryness. The residue was redissolved in the mobile phase and injected onto an octadecyl silica column (150 mm × 4.6 mm I.D.). The mobile phase was 0.05 M ammonium acetate (pH 4.5)—acetonitrile (85:15, v/v). Fluorometric detection (excitation 230 nm, emission 300 nm) was used. The minimum detectable level of nadolol in serum was 1 ng/ml.  相似文献   

19.
A coupled achiral-chiral liquid chromatographic assay has been developed to determine the concentrations of metyrapone and the enantiomers of its chiral metabolite metyrapol in plasma and urine. The chromatographic system consisted of a silica precolumn (75 × 4.6 mm I.D.) coupled in-line to a 250 × 4.6 mm I.D. column containing cellulose tris(4-methylbenzoate) coated on silica gel (Chiralcel OJ-CSP). When plasma samples were analyzed, the mobile phase was hexane-ethanol (92:8, v/v) modified with 0.1% diethylamine and when urine samples were analyzed the mobile phase was hexane-ethanol (94:6, v/v) modified with 0.2% diethylamine. Under these chromatographic conditions the chromatographic retentions [expressed as capacity factors (k′)] for metyrapone were k′ = 2.35 (plasma) and 2.52 (urine); for (−)-metyrapol k′ = 4.22 (plasma) and 4.62 (urine); for (+)-metyrapone k′ = 5.16 (plasma) and 5.86 (urine); enantioselectivities (α) were 1.09 (plasma) and 1.13 (urine). The assay has been validated for use in metabolic studies. The analyses of plasma and urine samples from one subject following oral administration of 750 mg of metyrapone indicated that the enzymatic reduction of myterapone by aldo-keto reductase was enantiospecific.  相似文献   

20.
A simple and sensitive high-performance liquid chromatographic method for the simultaneous assay of amiodarone and desethylarniodarone in plasma, urine and tissues has been developed. The method for plasma samples and tissue samples after homogenizing with 50% ethanol, involves deproteinization with acetonitrile containing the internal standard followed by centrifugation and direct injection of the supernatant into the liquid chromatograph. The method for urine specimens includes extraction with a diisopropyl ether—acetonitrile (95:5, v/v) mixture at pH 7.0 using disposable Clin-Elut 1003 columns, followed by evaporation of the eluate, reconstitution of the residue in methanol—acetonitrile (1:2, v/v) mixture and injection into the chromatograph. Separation was obtained using a Radial-Pak C18 column operating in combination with a radial compression separation unit and a methanol–25% ammonia (99.3:0.7, v/v) mobile phase. A wavelength of 242 nm was used to monitor amiodarone, desethylamiodarone and the internal standard. The influence of the ammonia concentration in the mobile phase on the capacity factors of amiodarone, desethylamiodarone and two other potential metabolites, monoiodoamiodarone (L6355) and desiodoamiodarone (L3937) were investigated. Endogenous substances or a variety of drugs concomitantly used in amiodarone therapy did not interfere with the assay.The limit of sensitivity of the assay was 0.025 μg/ml with a precision of ± 17%. The inter- and intra-day coefficient of variation for replicate analyses of spiked plasma samples was less than 6%. This method has been demonstrated to be suitable for pharmacokinetic and metabolism studies of amiodarone in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号