首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNTM3A and DNMT3B de novo DNA methyltransferases (DNMTs) are responsible for setting genomic DNA methylation patterns, a key layer of epigenetic information. Here, using an in vivo episomal methylation assay and extensive bisulfite methylation sequencing, we show that human DNMT3A and DNMT3B possess significant and distinct flanking sequence preferences for target CpG sites. Selection for high or low efficiency sites is mediated by the base composition at the −2 and +2 positions flanking the CpG site for DNMT3A, and at the −1 and +1 positions for DNMT3B. This intrinsic preference reproducibly leads to the formation of specific de novo methylation patterns characterized by up to 34-fold variations in the efficiency of DNA methylation at individual sites. Furthermore, analysis of the distribution of signature methylation hotspot and coldspot motifs suggests that DNMT flanking sequence preference has contributed to shaping the composition of CpG islands in the human genome. Our results also show that the DNMT3L stimulatory factor modulates the formation of de novo methylation patterns in two ways. First, DNMT3L selectively focuses the DNA methylation machinery on properly chromatinized DNA templates. Second, DNMT3L attenuates the impact of the intrinsic DNMT flanking sequence preference by providing a much greater boost to the methylation of poorly methylated sites, thus promoting the formation of broader and more uniform methylation patterns. This study offers insights into the manner by which DNA methylation patterns are deposited and reveals a new level of interplay between members of the de novo DNMT family.  相似文献   

2.
3.
The C-terminal domains of Dnmt3a and Dnmt3L form elongated heterotetramers (3L-3a-3a-3L). Analytical ultracentrifugation confirmed the Dnmt3a-C/3L-C complex exists as a 2:2 heterotetramer in solution. The 3a–3a interface is the DNA-binding site, while both interfaces are essential for AdoMet binding and catalytic activity. Hairpin bisulfite analysis shows correlated methylation of two CG sites in a distance of ~8-10 bp in the opposite DNA strands, which corresponds to the geometry of the two active sites in one Dnmt3a-C/3L-C tetramer. Correlated methylation was also observed for two CG sites at similar distances in the same DNA strand, which can be attributed to the binding of two tetramers next to each other. DNA-binding experiments show that Dnmt3a-C/3L-C complexes multimerize on the DNA. Scanning force microscopy demonstrates filament formation rather than binding of single tetramers and shows that protein–DNA filament formation leads to a 1.5-fold shortening of the DNA length.  相似文献   

4.
5-Aza-2′-deoxycytidine (5-aza-dC) is a nucleoside analogue with cytotoxic and DNA demethylating effects. Here we show that 5-aza-dC induces the proteasomal degradation of free (non-chromatin bound) DNMT1 through a mechanism which is dependent on DNA synthesis and the targeting of incorporated 5-aza-dC residues by DNMT1 itself. Thus, 5-aza-dC induces Dnmt1 degradation in wild-type mouse ES cells, but not in Dnmt [3a–/–, 3b–/–] mouse ES cells which express Dnmt1 but lack DNA methylation (<0.7% of CpG methylated) and contain few hemi-methylated CpG sites, these being the preferred substrates for Dnmt1. We suggest that adducts formed between DNMT1 and 5-aza-dC molecules in DNA induce a ubiquitin-E3 ligase activity which preferentially targets free DNMT1 molecules for degradation by the proteasome. The proteasome inhibitor MG132 prevents DNMT1 degradation and reduces hypomethylation induced by 5-aza-dC.  相似文献   

5.
Yu Y  Zhang H  Tian F  Zhang W  Fang H  Song J 《PloS one》2008,3(7):e2672
Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their relationships with chicken neoplastic disease resistance and susceptibility are not yet defined. In the present study, we analyzed the complexity of the DNA methylation variations and DNA mutations in the first exon of three DNMTs genes over generations, tissues, and ages among chickens of two highly inbred White Leghorn lines, Marek's disease-resistant line 6(3) and -susceptible line 7(2), and six recombinant congenic strains (RCSs). Among them, tissue-specific methylation patterns of DNMT3a were disclosed in spleen, liver, and hypothalamus in lines 6(3) and 7(2). The methylation level of DNMT3b on four CpG sites was not significantly different among four tissues of the two lines. However, two line-specific DNA transition mutations, CpG-->TpG (Chr20:10203733 and 10203778), were discovered in line 7(2) compared to the line 6(3) and RCSs. The methylation contents of DNMT1 in blood cell showed significant epimutations in the first CpG site among the two inbred lines and the six RCSs (P<0.05). Age-specific methylation of DNMT1 was detected in comparisons between 15 month-old and 2 month-old chickens in both lines except in spleen samples from line 7(2). No DNA mutations were discovered on the studied regions of DNMT1 and DNMT3a among the two lines and the six RCSs. Moreover, we developed a novel method that can effectively test the significance of DNA methylation patterns consisting of continuous CpG sites. Taken together, these results highlight the potential of epigenetic alterations in DNMT1 and DNMT3a, as well as the DNA mutations in DNMT3b, as epigenetic and genetic factors to neoplastic diseases of chickens.  相似文献   

6.
A key step in the process of metastasis is the epithelial-to-mesenchymal transition (EMT). We hypothesized that epigenetic mechanisms play a key role in EMT and to test this hypothesis we analyzed global and gene-specific changes in DNA methylation during TGF-β-induced EMT in ovarian cancer cells. Epigenetic profiling using the Infinium HumanMethylation450 BeadChip (HM450) revealed extensive (P < 0.01) methylation changes after TGF-β stimulation (468 and 390 CpG sites altered at 48 and 120 h post cytokine treatment, respectively). The majority of gene-specific TGF-β-induced methylation changes occurred in CpG islands located in or near promoters (193 and 494 genes hypermethylated at 48 and 120 h after TGF-β stimulation, respectively). Furthermore, methylation changes were sustained for the duration of TGF-β treatment and reversible after the cytokine removal. Pathway analysis of the hypermethylated loci identified functional networks strongly associated with EMT and cancer progression, including cellular movement, cell cycle, organ morphology, cellular development, and cell death and survival. Altered methylation and corresponding expression of specific genes during TGF-β-induced EMT included CDH1 (E-cadherin) and COL1A1 (collagen 1A1). Furthermore, TGF-β induced both expression and activity of DNA methyltransferases (DNMT) -1, -3A, and -3B, and treatment with the DNMT inhibitor SGI-110 prevented TGF-β-induced EMT. These results demonstrate that dynamic changes in the DNA methylome are implicated in TGF-β-induced EMT and metastasis. We suggest that targeting DNMTs may inhibit this process by reversing the EMT genes silenced by DNA methylation in cancer.  相似文献   

7.
DNA methylation serves as the principal form of post-replicative epigenetic modification. It is intricately involved in gene regulation and silencing in eukaryotic cells, making significant contributions to cell phenotype. Much of it is mitotically inherited; some is passed on from one filial generation to the next. Establishment and maintenance of DNA methylation patterns in mammals is governed by three catalytically active DNA methyltransferases – DNMT3a, DNMT3b and DNMT1. While the first two are responsible mainly for de novo methylation, DNMT1 maintains the methylation patterns by preferentially catalyzing S-adenosyl methionine-dependant transfer of a methyl group to cytosine at hemimethylated CpG sites generated as a result of semi-conservative DNA replication. DNMT1 contains numerous regulatory domains that fine-tune associated catalytic activities, deregulation of which is observed in several diseases including cancer. In this minireview, we analyze the regulatory mechanisms of various sub-domains of DNMT1 protein and briefly discuss its pathophysiological and pharmacological implications. A better understanding of DNMT1 function and structure will likely reveal new applications in the treatment of associated diseases.  相似文献   

8.
9.
Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome.  相似文献   

10.
11.
12.
13.
Bashaw JM  Yates JL 《Journal of virology》2001,75(22):10603-10611
oriP is a 1.7-kb region of the Epstein-Barr virus (EBV) chromosome that supports replication and stable maintenance of plasmids in human cells that contain EBV-encoded protein EBNA1. Plasmids that depend on oriP are replicated once per cell cycle by cellular factors. The replicator of oriP is an approximately 120-bp region called DS which depends on either of two pairs of closely spaced EBNA1 binding sites. Here we report that changing the distance between the EBNA1 sites of a functional pair by inserting or deleting 1 or 2 bp abolished replication activity. The results indicated that, while the distance separating the binding sites is critical, the specific nucleotide sequence between them is unlikely to be important. The use of electrophoretic mobility shift assays to investigate binding by EBNA1 to the sites with normal or altered spacing revealed that EBNA1 induces DNA to bend significantly when it binds, with the center of bending coinciding with the center of binding. EBNA1 binding to a functional pair of sites which are spaced 21 bp apart center to center and which thus are in helical phase induces a larger symmetrical bend, which based on electrophoretic mobility approximates the sum of two separate EBNA1-induced DNA bends. The results imply that replication from oriP requires a precise structure in which DNA forms a large bend around two EBNA1 dimers.  相似文献   

14.
15.
The human papillomavirus (HPV) DNA replication origin (ori) shares a common theme with many DNA control elements in having multiple binding sites for one or more proteins spaced over several hundreds of base pairs. The HPV type 11 ori spans 103 bp and contains three palindromic E2 binding sites (E2BS-2, E2BS-3, and E2BS-4) for the dimeric E2 ori binding protein. These sites are separated by 64 and 3 bp. E2BS-1 is located 288 bp upstream of E2BS-2 and is not required for efficient transient or cell-free replication. In this study, electron microscopy was used to visualize complexes of HPV-11 DNA ori bound by purified E2 protein. DNA containing only E2BS-2 showed a single E2 dimer bound. DNA containing E2BS-3 and E2BS-4 showed two side-by-side E2 dimers, while DNA containing E2BS-2, E2BS-3, and E2BS-4 exhibited a large disk/ring-shaped protein particle bound, indicating that the DNA had been remodeled into a discrete complex, likely containing an E2 hexamer. With all four binding sites present, up to 27% of the DNA molecules were arranged into loops by E2, the majority of which spanned E2BS-1 and one of the other three sites. Studies on the dependence of looping on salt, ATP, and DTT using full-length E2 and an E2 protein containing only the carboxyl-terminal DNA binding and protein dimerization domain suggest that looping is dependent on the N-terminal domain and factors that may affect the manner in which E2 scans DNA for binding sites. The role of these structures in the modeling and regulation of the HPV-11 ori is discussed.  相似文献   

16.
17.
18.
19.
20.
Trihalomethanes (THM) are undesired disinfection byproducts (DBPs) formed during water treatment. Mice exposed to DBPs showed global DNA hypomethylation and c-myc and c-jun gene-specific hypomethylation, while evidence of epigenetic effects in humans is scarce. We explored the association between lifetime THM exposure and DNA methylation through an epigenome-wide association study. We selected 138 population-based controls from a case-control study of colorectal cancer conducted in Barcelona, Spain, exposed to average lifetime THM levels ≤85 μg/L vs. >85 μg/L (N = 68 and N = 70, respectively). Mean age of participants was 70 years, and 54% were male. Average lifetime THM level in the exposure groups was 64 and 130 µg/L, respectively. DNA was extracted from whole blood and was bisulphite converted to measure DNA methylation levels using the Illumina HumanMethylation450 BeadChip. Data preprocessing was performed using RnBeads. Methylation was compared between exposure groups using empirical Bayes moderated linear regression for CpG sites and Gaussian kernel for CpG regions. ConsensusPathDB was used for gene set enrichment. Statistically significant differences in methylation between exposure groups was found in 140 CpG sites and 30 gene-related regions, after false discovery rate <0.05 and adjustment for age, sex, methylation first principal component, and blood cell proportion. The annotated genes were localized to several cancer pathways. Among them, 29 CpGs had methylation levels associated with THM levels (|Δβ|≥0.05) located in 11 genes associated with cancer in other studies. Our results suggest that THM exposure may affect DNA methylation in genes related to tumors, including colorectal and bladder cancers. Future confirmation studies are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号