首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a sensitive high-performance liquid chromatographic assay for the determination of the zidovudine metabolite 3′-amino-3′-deoxythimidine (AMT) using fluorescence detection and sensitivity in the picomolar range. Plasma was diluted with 0.05 M sodium phosphate buffer pH 7.2 and subsequently prepared for analysis using solid-phase extraction. AMT was derivatized with 9-fluorenyl methylchloroformate and chromatographed using a reversed-phase system. The mobile phase consisted of acetonitrile-0.01 M potassium phosphate buffer (pH 7) (32:68, v/v). The fluorescence of the column effluent was monitored at 262 nm (excitation) and 306 nm (emission). Good resolution of AMT from endogenous plasma components was obtained. Within- and between-day variability was less than 10%. The limit of quantitation was 0.9 μg/l. The assay was successfully applied to the determination of AMT in human plasma and plasma of mice treated with zidovudine.  相似文献   

2.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

3.
A reliable reversed-phase high-performance liquid chromatographic method was developed for the determination of liposomal nystatin in plasma. Nystatin is extracted by 1:2 (v/v) liquid–liquid extraction with methanol. Separation is achieved by HPLC after direct injection on a μBondapak™ C18 analytical column with a mobile phase composed of 10 mM sodium phosphate, 1 mM EDTA, 30% methanol and 30% acetonitrile adjusted to pH 6. Detection is by ultraviolet absorbance at 305 nm. Quantitation is based on the sum of the peak area concentration of the two major isomers of nystatin, which elute at 7.5–8.5 and 9.5–10.5 min. The assay was linear over the concentration range of 0.05 to 50 μg/ml. The lower limit of quantitation was 0.05 μg/ml, sufficient for investigating the plasma pharmacokinetics of liposomal nystatin in preclinical studies. Accuracies and intra- and inter-day precision showed good reproducibility. With minor modifications, this method also was used for assaying nystatin in various non-plasma body fluids and tissues.  相似文献   

4.
This paper describes a high-performance liquid chromatographic method with fluorescence detection for the analysis of methyl-β-cyclodextrin (MEBCD) in plasma and cell lysate, after in situ complexation with 1-naphthol. The size-exclusion HPLC column packed with TSK 3000 SW gel, was equilibrated with an eluent mixture composed of methanol and purified water (2:98, v/v) containing 10−4 M 1-naphthol as a fluorophore. The detection is based on fluorescence enhancement caused by the formation of inclusion complexes and was performed at 290 and 360 nm for excitation and emission, respectively. The method involved a simple treatment of the samples with chloroform. Daunorubicin was used as internal standard. Limits of quantitation were 0.8 μM in plasma and 0.5 μM in cell lysate. Detection limits of 0.5 μM (50 pmol) and 0.3 μM (30 pmol) were obtained for MEBCD in the two media, respectively. Linear detection response was obtained for concentrations ranging from 1 to 100 μM in plasma and cell lysate. Recovery from plasma proved to be more than 40%. Precision, expressed as C.V. was in the range of 4 to 11%. Accuracy ranged from 89 to 105%.  相似文献   

5.
Calphostin C is a potent inhibitor of protein kinase C and can induce Ca2+-dependent apoptosis in human ALL cells. Further development of calphostin C will require detailed pharmacodynamic studies in preclinical animal models. Therefore, we established a sensitive and accurate high-performance liquid chromatography (HPLC)-based quantitative detection method for the measurement of calphostin C levels in plasma. Extraction of calphostin C from plasma was performed by precipitation of plasma protein using acetonitrile and an aliquot of extracted supernatant was injected onto a Hewlett-Packard HPLC system constituting a 250×4 mm LiChrospher 100, RP-18 (5 μm) in conjunction with a 4×4 mm LiChrospher 100, RP-18 guard column (5 μm). The eluted compounds were detected by diode array detection set at a wavelength of 479 nm. Acetonitrile–water containing 0.1% trifluoroacetic acid and 0.1% triethylamine (70:30, v/v) was used as the mobile phase. The average extraction recovery from plasma was 97.3%. Good linearity (r>0.999) was observed throughout the concentration range of 0.05–40 μM for calphostin C in 50 μl of plasma. Intra- and inter-assay variabilities were less than 6% in plasma. The lowest detection limit of calphostin C in 50 μl plasma was 0.02 μM at a signal-to-noise ratio of ∼3. The availability of this assay will now permit detailed pharmacodynamic and pharmacokinetic studies of calphostin C in vivo.  相似文献   

6.
A sensitive method was developed for the simultaneous determination of six adenyl purines in human plasma by high-performance liquid chromatography. The adenyl purines (adenine, adenosine, AMP, ADP, ATP and cyclic AMP) were derivatized using 2-chloroacetaldehyde for fluorescence detection, and the reaction and separation conditions were reinvestigated to improve sensitivity for small volume sample analysis. Each derivatized purine was separated on a Capcell Pack SG120A™ column with mobile phase consisting of 0.05 M citric acid–0.1 M dipotassium hydrogen phosphate (pH 4.0)–methanol (97+3). The detection limits were 100–1000 fmol/ml by fluorescence detection, some 500 times better than previous reports. The proposed method was applied to determine adenyl purines in human plasma. The purine levels were as follows: ATP (9.2–22.2 pmol/ml), ADP (5.5–22.2 pmol/ml), AMP (0.8–3.2 pmol/ml). Other purines, adenine, adenosine, cAMP were lower than 0.1 pmol/ml.  相似文献   

7.
A simple HPLC method has been developed for the determination of ticlopidine in human plasma. Plasma samples were buffered at pH 9 and extracted with n-heptane-isoamyl alcohol (98.5: 1.5, v/v). Imipramine was used as internal standard. Chromatography was performed isocratically with acetonitrile-methanol-0.05 M KH2PO4 (20:25:55, v/v) at pH 3.0 containing 3% triethylamine at a flow-rate of 1 ml/min. A reversed-phase column, Supelcosil LC-8-DB, 15 cm × 4.6 mm I.D., 5 μm particle size, was used. The effluent was monitored by UV absorbance detection at 235 nm. The method showed good accuracy, precision and linearity in the concentration range 5–1200 ng/ml. The limit of quantitation was 5 ng/ml, with a precision (C.V.) of 8.91%, which is the same as that achieved by other authors with a previously published GC-MS method. The procedure described in this paper is simple and allows the routine assessment of ticlopidine plasma concentration in pharmacokinetic studies following therapeutic doses in human subjects.  相似文献   

8.
The reversed-phase HPLC methods were developed to determinate the covalently bound protein adducts of the novel anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA) via its glucuronides after releasing aglycone by alkaline hydrolysis in human plasma and human serum albumin (HSA). An aliquot of 75 μl of the mixture was injected onto a Spherex C18 column (150×4.6 mm; 5 μm) at a flow-rate of 2.5 ml/min. The mobile phase comprising of acetonitrile:10 mM ammonium acetate buffer (24:76, v/v, pH 5.8) was used in an isocratic condition, and DMXAA was detected by fluorescence. The method was validated with respect to recovery, selectivity, linearity, precision, and accuracy. Calibration curves for DMXAA were constructed in the concentration range of 0.5–40 μM in washed blank human plasma or HSA prior to alkaline hydrolysis. The difference between the theoretical and calculated concentration and the relative standard deviation were less than 10% at all quality control (QC) concentrations. The limit of detection for the covalent adduct in human plasma or HSA is 0.20 μM. The methods presented good accuracy, precision and sensitivity for use in the preclinical and clinical studies.  相似文献   

9.
The present describes a new high-performance liquid chromatographic method with fluorescence detection for the analysis of levodropropizine [S-(−)-3-(4-phenylpiperazin-1-yl)-propane-1,2-diol] (Levotuss), an anti-tussive drug, in human serum and plasma. A reversed-phase separation of levodropropizine was coupled with detection of the native fluorescence of the molecule, using excitation and emission wavelengths of 240 nm and 350 nm respectively. The analytical column was packed with spherical 5 μm poly(styrene-divinylbenzene) particles and the mobile phase was 0.1 M NaH2PO4 pH 3-methanol (70:30, v/v), containing 0.5% (v/v) tetrahydrofuran. For quantitation, p-methoxylevodropropizine was used as the internal standard. Samples of 200 μl of either serum or plasma were mixed with 200 μl of 0.1 M Na2HPO4 pH 8.9 and extracted with 5 ml of chloroform-2-propanol (9:1, v/v). The dried residue from the organic extract was redissolved with distilled water and directly injected into the chromatograph. The limit of detection for levodropropizine, in biological matrix, was about 1–2 ng/ml, at a signal-to-noise ratio of 3. The linearity was satisfactory over a range of concentrations from 3 to 1000 ng/ml (r2 = 0.99910); within-day precision tested in the range 5–100 ng/ml as well as day-to-day reproducibility proved acceptable, with relative standard deviations better than 1% in most cases. Interferences from as many as 91 therapeutic or illicit drugs were excluded.  相似文献   

10.
We have developed and validated a sensitive and selective method for the determination of the P-glycoprotein modulator GF120918 in murine and human plasma. Chlorpromazine is used as internal standard. Sample pretreatment involves liquid–liquid extraction with tert-butyl methyl ether. Chromatographic separation is achieved by reversed-phase high-performance liquid chromatography using a Symmetry C18 column and detection was accomplished with a fluorescence detector set at excitation and emission wavelengths of 260 and 460 nm, respectively. The mobile phase consists of acetonitrile–50 mM ammonium acetate buffer, pH 4.2 (35:65, v/v). To achieve good separation from endogenous compounds and to improve the peak shape the counter-ion 1-octane sulfonic acid (final concentration 0.005 M) was added to the mobile phase. The lower limit of quantitation was 5.7 ng/ml using 200 μl of human plasma and 23 ng/ml using 50 μl of murine plasma. Within the dynamic range of the calibration curve (5.7–571 ng/ml) the accuracy was close to 100% and within-day and between-day precision were within the generally accepted 15% range. The stability of GF120918 was tested in plasma and blood from mice and humans incubated at 4°C, room temperature, and 37°C for up to 4 h. No losses were observed under these conditions. This method was applied to study the pharmacokinetics of orally administered GF120918 in humans and mice. The sensitivity of the assay was sufficient to determine the concentration in plasma samples obtained up to 24 h after drug administration.  相似文献   

11.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the prokinetic drug cisapride is described. Alkalinised samples of plasma (100 μl) were extracted with 1.0 ml of 10% (v/v) isopropanol in chloroform, dried, redissolved in mobile phase and injected. Chromatography was performed at 20°C by pumping a mobile phase of acetonitrile (370 ml) in pH 5.2, 0.02 M phosphate buffer (630 ml) at 1.0 ml/min through a C8 Symmetry column. Cisapride and the internal standard were detected by fluorescence monitoring at 295 nm (excitation) and 350 nm (emission), and were eluted 5 min and 8 min, respectively, after injection. Calibration plots in bovine serum albumin (3% w/v) were linear (r > 0.999) from 5 to 250 ng/ml. Intra-day and inter-day precision (C.V.) was 9.5%, or less, and the accuracy was within 5.5% of the nominal concentration over the range 8–200 ng/ml. Total assay recovery was above 82%. Endogenous plasma components, major cisapride metabolite (norcisapride), and other durgs used in neonatal pharmacotherapeutics did not interfere.  相似文献   

12.
A rapid HPLC method with UV absorbance detection at 333 nm for the measurement of nitrite and nitrate in ultrafiltrate samples of human plasma is described. The method is based on hydrochloric acid-catalyzed conversion of nitrite by N-acetyl-l-cysteine to S-nitroso-N-acetyl-l-cysteine and isocratic elution using 10 mM NaH2PO4 in acetonitrile–water, pH 2.0 (15:85, v/v). The limit of detection of the method is 50 nM nitrite. The method was validated by gas chromatography–mass spectrometry.  相似文献   

13.
A new high-performance liquid chromatographic method with column switching has been developed for the simultaneous determination of metampicillin and its metabolite ampicillin in biological fluids. The plasma, urine and bile samples were injected onto a precolumn packed with LiChrosorb RP-8 (25–40 μm) after simple dilution with an internal standard solution in 0.05 M phosphate buffer (pH 7.0). The polar plasma components were washed out using 0.05 M phosphate buffer (pH 7.0). After valve switching, the concentrated drugs were eluted in the back-flush mode and separated by an Ultracarb 5 ODS-30 column with a gradient system of acetonitrile-0.02 M phosphate buffer (pH 7.0) as the mobile phase. The method showed excellent precision, accuracy and speed with a detection limit of 0.1 μg/ml. The total analysis time per sample was less than 40 min and the coefficients of variation for intra- and inter-assay were less than 5.1%. This method has been successfully applied to plasma, urine and bile samples from rats after intravenous injection of metampicillin.  相似文献   

14.
An analytical method for the enantioselective determination of selfotel in human urine has been developed and validated. The method is based on high-performance liquid chromatography and utilizes CGS 20005 (a selfotel analog) as the internal standard. Urine samples were derivatized in situ with o-phthalic dicarboxaldehyde–3-mercaptopropionic acid and 9-fluorenylmethyl chloroformate (FMOC). Chromatographic separations of the FMOC derivatives of selfotel enantiomers and the internal standard were achieved using a column switching system consisting of an Inertsil ODS-2 column (75×4.6 mm I.D., 5 μm) and a Chiralcel OD-R column (250×4.6 mm I.D., 10 μm). The composition of the mobile phase was acetonitrile–0.1 M phosphate buffer, pH 2.50 (35:65) for the Inertsil ODS-2 column and acetonitrile–0.1 M phosphate buffer, pH 2.00 (35:65) for the Chiralcel OD-R column. The analytes were monitored using fluorescence detection at an excitation wavelength of 262 nm and an emission wavelength of 314 nm. The limit of quantification (LOQ) for this method is 0.25 μg/ml for each selfotel enantiomer. The method was successfully utilized to determine preliminary selfotel stereospecific pharmacokinetics.  相似文献   

15.
Laser-induced native fluorescence detection with a KrF excimer laser (λ=248 nm) was used to investigate the capillary electrophoretic (CE) profiles of human urine, saliva and serum without the need for sample derivatization. All separations were carried out in sodium phosphate and/or sodium tetraborate buffers at alkaline pH in a 50-μm I.D. capillary. Sodium dodecyl sulfate was added to the buffer for micellar electrokinetic chromatography (MEKC) analysis of human urine. Although inherently a pulsed source, the KrF excimer laser was operated at a high pulse repetition rate of 553, 1001 or 2009 Hz to simulate a continuous wave excitation source. Detection limits were found to vary with pulse rate, as expected, in proportion to average excitation power. The following detection limits (3σ) were determined in free solution CE: tryptophan, 4 nM; conalbumin, 10 nM; α-lactalbumin, 30 nM. Detection limits for indole-based compounds and catecholamine urinary metabolites under MEKC separation conditions were in the range 7–170 nM.  相似文献   

16.
A high-performance liquid chromatogaphic method was developed for determining the concentrations of ticarcillin (TIPC) epimers in human plasma and urine. Samples were prepared for HPLC analysis with a solid-phase extraction method and the concentrations of TIPC epimers were determined using reversed-phase HPLC. The mobile phase was a mixture of 0.005 M phosphate buffer (pH 7.0) and methanol (12:1, v/v) with a flow-rate of 1.0 ml/min. TIPC epimers were detected at 254 nm. Baseline separation of the two epimers was observed for both plasma and urine samples with a detection limit of ca. 1 μg/ml with a S/N ratio of 3. No peaks interfering with either of the TIPC epimers were observed on the HPLC chromatograms for blank plasma and urine. The recovery was more than 80% for both plasma and urine samples. C.V. values for intra- and inter-day variabilities were 0.9–2.1 and 1.1–6.4%, respectively, at concentrations ranging between 5 and 200 μg/ml. The present method was used to determine the concentrations of TIPC epimers in plasma and urine following intravenous injection of TIPC to a human volunteer. It was found that both epimers were actively secreted into urine and that the secretion of TIPC was not stereoselective. Plasma protein binding was also measured, which revealed stereoselective binding of TIPC in human plasma.  相似文献   

17.
6-Thioguanine (6TG) and its metabolites were analyzed in human plasma with a reversed-phase high-performance liquid chromatographic method. 6TG and related compounds were extracted from plasma with an equal volume of 2 N perchloric acid at a 50–100% recovery efficiency. The neutralized extracts were chromatographed on a μBondapak C18 column by two separate isocratic conditions. 6TG, 6-thiouric acid, 6-thioxanthine, 6-thioguanosine, and 6-methylthiouric acid were analyzed with 0.01 M sodium acetate, pH 3.5–10% methanol as the mobile phase and 340 nm for detection. 6-Methylthioguanine and three unknown metabolites were separated with acetate—25% methanol and 310 nm detection. One of the unknowns was identified as 6-methylthioguanosine. External standard calibration was used for quantitation. The 6TG detection limit was 0.8 nmol/ml in plasma.  相似文献   

18.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

19.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of amdinocillin (formerly mecillinam) in human plasma and urine. The assay is performed by direct injection of a plasma protein-free supernatant or a dilution of urine. A 10-μm μBondapak phenyl column with an eluting solvent of water—methanol—1 M phosphate buffer, pH 7 (70:30:0.5) was used, with UV detection of the effluent at 220 nm. Azidocillin potassium salt [potassium-6-(d-(-)-α-azidophenyacetamido)-penicillanate] was used as the internal standard and quantitation was based on peak height ratio of amdinocillin to that of the internal standard. The assay has a recovery of 74.4 ± 6.3% (S.D.) in the concentration ranges of 0.1–20 μg per 0.2 ml of plasma with a limit of detection equivalent to 0.5 μg/ml plasma. The urine assay was validated over a concentration range of 0.025–5 mg/ml of urine, and has a limit of detection of 0.025 mg/ml (25 μg/ml) using a 0.1-ml urine specimen per assay.The assay was applied to the determination of plasma and urine concentrations of amdinocillin following intravenous administration of a 10 mg/kg dose of amdinocillin to two human subjects. The HPLC and microbiological assays were shown to correlate well for these samples.  相似文献   

20.
We have devised a procedure for the synthesis of analogs of combretastatin A-4 (CA-4) containing sulfur and selenium atoms as spacer groups between the aromatic rings. CA-4 is well known for its potent activity as an inhibitor of tubulin polymerization, and its prodrugs combretastatin A-4 phosphate (CA-4P) and combretastatin A-1 phosphate (CA-1P) are being investigated as antitumor agents that cause tumor vascular collapse in addition to their activity as cytotoxic compounds. Here we report the preparation of two sulfur analogs and one selenium analog of CA-4. All synthesized compounds, as well as several synthetic intermediates, were evaluated for inhibition of tubulin polymerization and for cytotoxic activity in human cancer cells. Compounds 3 and 4 were active at nM concentration against MCF-7 breast cancer cells. As inhibitors of tubulin polymerization, both 3 and 4 were more active than CA-4 itself. In addition, 4 was the most active of these agents against 786, HT-29 and PC-3 cancer cells. Molecular modeling binding studies are also reported for compounds 1, 3, 4 and CA-4 to tubulin within the colchicine site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号