首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Gastric cancer (GC) is one of the most frequent malignancies worldwide. Long noncoding RNAs (lncRNAs) are found to be largely implicated in various cancers, including GC. However, the function of lncRNA VCAN antisense RNA 1 (VCAN-AS1) in GC remains unclear. Herein, we observed a low level of VCAN-AS1 in normal gastric tissues through NCBI and UCSC, and that VCAN-AS1 upregulation in GC tissues was related to poor prognosis by TCGA. Furthermore, VCAN-AS1 was found markedly enhanced in GC tissues and cell lines, while its upregulation was related with clinical outcomes of GC patients. Besides this, silencing VCAN-AS1 represses cell proliferation, migration, and invasion but enhances apoptosis. More important, we discovered that VCAN-AS1 expression was negatively correlated with wild-type p53 levels in GC tissues and that p53 was negatively modulated by VCAN-AS1 in GC cells. Furthermore, p53 suppression reversed the repression of VCAN-AS1 silence on the biological processes of AGS cells. Intriguingly, we identified that both VCAN-AS1 and TP53 can bind with eIF4A3, one of the core proteins in the exon junction complex. Also, we confirmed that VCAN-AS1 negatively regulates TP53 expression by competitively binding with eIF4A3. Our findings disclosed that VCAN-AS1 contributes to GC progression through interacting with eIF4A3 to downregulate TP53 expression, indicating that VCAN-AS1 is a novel therapeutic strategy for GC treatment.  相似文献   

3.
An increasing body of evidence indicates that miR-149 can both suppress and promote tumor growth depending on the tumor type. However, the role of miR-149 in the progression of gastric cancer (GC) remains unknown. Here we report that miR-149 is a tumor suppressor in human gastric cancer. miR-149 expression is decreased in GC cell lines and clinical specimens in comparison to normal gastric epithelial cell and tissues, respectively. The expression levels of miR-149 also correlate with the differentiation degree of GC cells and tissues. Moreover, ectopic expression of miR-149 in gastric cancer cells inhibits proliferation and cell cycle progression by down-regulating ZBTB2, a potent repressor of the ARF-HDM2-p53-p21 pathway, with a potential binding site for miR-149 in its mRNA''s 3′UTR. It is also found that ZBTB2 expression increases in GC cells and tissues compared to normal gastric epithelial cell and tissues, respectively. Silencing of ZBTB2 leads to suppression of cell growth and cell cycle arrest in G0/G1 phase, indicating that ZBTB2 may act as an oncogene in GC. Furthermore, transfection of miR-149 mimics into gastric cancer cells induces down-regulation of ZBTB2 and HDM2, and up-regulation of ARF, p53, and p21 compared to the controls. In summary, our data suggest that miR-149 functions as a tumor suppressor in human gastric cancer by, at least partially through, targeting ZBTB2.  相似文献   

4.
Zhu JJ  Li FB  Zhu XF  Liao WM 《Life sciences》2006,78(13):1469-1477
p33ING1b induces cell cycle arrest and stimulates DNA repair, apoptosis and chemosensitivity. The magnitude of some p33ING1b effects may be due to activation of the tumor suppressor p53. To investigate if the p33ING1b protein affected chemosensitivity of osteosarcoma cells, we overexpressed p33ING1b in p53+/+ U2OS cells or in p53-mutant MG63 cells, and then assessed for growth arrest and apoptosis after treatment with etoposide. p33ING1b increased etoposide-induced growth inhibition and apoptosis to a much greater degree in p53+/+ U2OS cells than in p53-mutant MG63 cells. Moreover, ectopic expression of p33ING1b markedly upregulated p53, p21WAF1 and bax protein levels and activated caspase-3 protein kinase in etoposide-treated U2OS cells. Together, our data indicate that p33ING1b prominently enhances etoposide-induced apoptosis through p53-dependent pathways in human osteosarcoma cells. p33ING1b may be an important marker and/or therapeutic target in the prevention and treatment of metastatic osteosarcoma.  相似文献   

5.
Small synthetic compounds have been implicated in treatment of human cancers. We have synthesized a small compound, BPR1K0609S1 (hereafter, BP), which inhibits Aurora-A kinase. In the present study, we studied the mechanism of BP suppression of tumorigenesis induced by Aurora-A. Given our previous results that inactivation of p53 accelerates MMTV-Aurora-A-mediated tumorigenesis in vivo, we studied the roles of p53 pathway using the isogenic human colon carcinoma cell lines of HCT116, in which p53, Puma, Bax, p21 or Chk2 is deleted. When these isogenic cell lines are treated with BP for 48 h, accumulation of G2M phase and aneuploidy are commonly observed, and HCT116 p21(-) cells show increase in apoptosis. In xenograft assay, s.c. injection of BP efficiently inhibits tumorigenesis of HCT116 deficient for Chk2 or p21. Re-transplantation of BP-resistant tumors indicates that these resistant cells do not acquire advanced tumor growth. Significantly, 5-FU (5-fluorouracil) treatment further induces apoptosis of BP-resistant HCT116 deficient for Chk2 or Puma. These results demonstrate that p21 deficiency enhances BP-mediated suppression of tumor growth, and that BP and 5-FU can collaborate for tumor regression.  相似文献   

6.
The present study was designed to investigate the role of miR-30 in the development of Gastric cancer (GC). miR-30 expression was increased in GC tissues and cell lines. Downregulation of miR-30 inhibited cell proliferation and promoted apoptosis in HGC-27 cells. Upregulation of miR-30 enhanced the proliferation and inhibited apoptosis. P53 expression was decreased in GC tissues. P53 expression was correlated with miR-30 expression. Downregulation of miR-30 increased P53 expression. Knockdown of P53 inhibited miR-30-inhibitor-induced suppression of cell proliferation and increase of apoptosis. Downregulation of miR-30 increased ROS generation which was inhibited by shP53. miR-30 inhibitors induced a decrease in mitochondrial oxygen consumption, cytoplasmic release of cytochrome c, and activation of Caspase 3 and 9, activating mitochondrial apoptotic pathway. Downregulation of P53 and N-acetyl-cysteine suppressed miR-30 inhibitors-activated mitochondrial dysfunction and apoptotic events. In conclusion, we identified that miR-30 functioned as a potential oncomiR through P53/ROS-mediated regulation of mitochondrial apoptotic pathway.  相似文献   

7.
Chemoresistance is a key cause of treatment failure in colon cancer. MiR-22 is a tumor-suppressing microRNA. To explore whether miR-22 is an important player in the development of chemoresistance in colon cancer, we overexpressed miR-22 and subsequently tested its role in cell proliferation, apoptosis, survival, and associated signaling in p53-mutated HT-29 and HCT-15 cells, and p53 wild-type HCT-116 cells. We further investigated the role of miR-22 on cytotoxicity of paclitaxel in both the p53-mutated and p53 wild-type colon cancer cells. Results showed that HT-29 and HCT-15 cells were resistant to paclitaxel-induced cytotoxicity, which normally inhibits cell proliferation and survival, and induces apoptosis. Conversely, HCT-116 was relatively sensitive to the cytotoxicity of paclitaxel. Overexpression of miR-22 significantly decreased cell proliferation and survival, and induced cell apoptosis in the p53-mutated colon cancer cells, but played no role in the p53 wild-type cells. Importantly, miR-22 overexpression enhanced the cytotoxic role of paclitaxel in p53-mutated HT-29 and HCT-15 cells, but not in p53 wild-type HCT-116 cell. We further demonstrated that the tumor-suppressive role of miR-22 in p53-mutated colon cancer cells was mediated by upregulating PTEN expression, which negatively regulated Akt phosphorylation at Ser(473) and MTDH expression, and subsequently increased Bax and active caspase-3 levels. Our study is the first to identify the tumor-suppressive role of miR-22 and its associated signaling in the p53-mutated colon cancer cells and highlighted the chemosensitive role of miR-22.  相似文献   

8.
胃癌(GC)是最常见的恶性肿瘤之一,是人类健康的主要威胁,其发病机制是一个单基因或多基因逐步突变的过程,与细胞的侵袭、增殖和转移有关,包括癌基因遗传和表观遗传的突变、肿瘤抑制基因、DNA修复途径基因、细胞周期途径基因和幽门螺杆菌感染等。而山奈酚具有多种生物学活性,能够抑制多种肿瘤细胞的细胞周期,诱导肿瘤细胞凋亡从而抑制肿瘤细胞/组织的侵袭及转移。因此本研究用不同浓度的山奈酚处理胃癌细胞,并检测了胃癌细胞的形态变化情况、癌细胞凋亡相关因子P53和PARP1基因的表达水平和其对应的蛋白质表达变化。结果表明大于100μmol/L山奈酚处理后的胃癌细胞中P53基因和P53蛋白的表达水平被显著提高,而相反的PARP1基因和蛋白的表达则被显著抑制,且山奈酚处理后胃癌细胞的凋亡数目也明显增加,因此本实验结果表明,山奈酚能够有效的促进胃癌细胞凋亡的发生,以此来达到抑制癌细胞恶性增殖的作用。这一结果可以为后续针对胃癌新疗法的研究提供一些思路和理论支持。  相似文献   

9.
10.
目的:探讨羽扇豆醇介导鼠双微基因2(Mouse double microgene 2,MDM2)-p53通路对胃癌细胞生物学行为的影响及相关机制。方法:对数生长期的胃癌小鼠MFC细胞株随机分为三组。实验1组与实验2组给予10 mg/L和20 mg/L的羽扇豆醇处理,对照组以等体积的1×磷酸盐缓冲液处理。对比三组MFC细胞细胞增殖、凋亡、迁移与侵袭,及MDM2-p53通路蛋白表达。结果:细胞处理后6 h与12 h,实验1组与实验2组的细胞增殖指数、细胞迁移与侵袭指数、MDM2蛋白相对表达水平显著低对于对照组,实验2组也低于实验1组,对比差异都有统计学意义(P<0.05)。细胞处理后6 h与12 h,实验1组与实验2组的细胞凋亡指数、p53蛋白相对表达水平显著高于对照组,实验2组也高于实验1组,对比差异都有统计学意义(P<0.05)。结论:羽扇豆醇能促进胃癌细胞p53蛋白的表达,抑制MDM2蛋白的表达,从而促进细胞凋亡,抑制胃癌的增殖、侵袭与转移,且具有剂量依赖性。  相似文献   

11.
12.
Background and purposeGastric cancer is one of the major malignancies worldwide. Epiberberine (EPI) is a major alkaloid from Coptis chinensis Franch and the antitumor property of EPI remains poorly understood.MethodThe inhibition on gastric cancer cells was observed by MTT assays and colony formation experiments. The apoptosis, cell cycle, and reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) in gastric cancer cells were analyzed by Flow cytometry. The anti-tumor effect of EPI was evaluated with the MKN-45-beraring nude mice, and the potential mechanisms were explored by RNA-seq, qPCR, siRNA silencing and western blotting.ResultsEPI inhibited the proliferation of human gastric cancer cell lines MKN-45 (harboring wild-type p53) and HGC-27 (harboring mutant p53) in a dose dependent manner. EPI induced the apoptosis and cell cycle arrest in these two cell lines, of which MKN-45 cells are more sensitive to EPI than HGC-27 cells. Further experiments indicated that EPI induced the accumulation of ROS and decreased of ΔΨm in MKN-45 cells. The significant differentially expressed genes obtained by RNA-seq were distinctly enriched in the p53 signaling pathway. The apoptosis induced by EPI in MKN-45 cells would be effectively inhibited with the treatment of p53 siRNA and p53 inhibitor PFT-α. Western blotting demonstrated that EPI diminished the expression of Bcl-2 and XIAP, and increased those of p53, Bax, p21, p27, Cytochrome C and Cleaved-caspase 3. Animal experiments confirmed that EPI significantly alleviated tumor growth in MKN-45 xenograft mice via p53/Bax pathway.ConclusionsThese data indicated that EPI could be a novel anti-tumor candidate against MKN-45-related gastric cancer via targeting p53-dependent mitochondria-associated pathway.  相似文献   

13.
Gastric carcinoma (GC) is a malignant tumor that has high mortality and morbidity worldwide. Although many efforts have been focused on the development and progression of GC, the underlying functional regulatory mechanism of GC needs more clarification. Metallothionein 1G (MT1G) is a member of the metallothionein family (MTs), and hypermethylation of MT1G occurred in a variety of cancers, including gastric cancer. However, the functional mechanism of MT1G in GC remains unclear. Here, we demonstrated that MT1G was down-regulated in GC tissues and cells. Overexpression of MT1G inhibited cell proliferation, foci formation and cell invasion, while knockdown of MT1G increased cell proliferation, foci formation and cell invasion. In addition, MT1G overexpression inhibited cell cycle progression and MT1G deficiency exerted opposite phenotype. p-AKT was negatively regulated by MT1G. In summary, our study reveals that MT1G exerts crucial role in regulating of cell proliferation and migration of gastric cancer, providing new insights for MT1G-related pathogenesis and a basis for developing new strategies for treatment of GC. Keywords: MT1G, GC, PI3K/AKT signaling pathway, cell growth, EMT  相似文献   

14.
Triptolide, an active compound extracted from Chinese herb Leigongteng (Tripterygium wilfordii Hook F.), shows a broad-spectrum of anticancer activity through its cytotoxicity. However, the efficacy of triptolide on laryngocarcinoma rarely been evaluated, and the mechanism by which triptolide-induced cellular apoptosis is still not well understood. In this study, we found that triptolide significantly inhibited the laryngocarcinoma HEp-2 cells proliferation, migration and survivability. Triptolide induces HEp-2 cell cycle arrest at the G1 phase and apoptosis through intrinsic and extrinsic pathways since both caspase-8 and -9 are activated. Moreover, triptolide enhances p53 expression by increasing its stability via down-regulation of E6 and E6AP. Increased p53 transactivates down-stream target genes to initiate apoptosis. In addition, we found that short time treatment with triptolide induced DNA damage, which was consistent with the increase in p53. Furthermore, the cytotoxicity of triptolide is decreased by p53 knockdown or use of caspases inhibitor. In conclusion, our results demonstrated that triptolide inhibits cell proliferation and induces apoptosis in laryngocarcinoma cells by enhancing p53 expression and activating p53 functions through induction of DNA damage and suppression of E6 mediated p53 degradation. These studies indicate that triptolide is a potential anti-laryngocarcinoma drug.  相似文献   

15.
A gastric cancer (GC) cell line, AGS, has high-level expression of CD40, a tumor necrosis factor receptor (TNFR) family member. CD40 is present on the surfaces of a large variety of cells, including B cells, endothelial cells, dendritic cells and some carcinoma cells, and delivers signals regulating diverse cellular responses, such as proliferation, differentiation, growth suppression, and cell death. In this research, we studied the effects of different forms of CD40 stimulation on AGS cells by flow cytometry, Western blotting and siRNA transfection. We found that different forms of CD40 stimulation, either recombinant soluble CD40L (sCD40L, ligation) or agonist anti-CD40 antibody (cross-linking), induced different effects in AGS gastric cancer cells, proliferation or apoptosis. We also showed that VEGF provided a significant contribution to sCD40L-induced proliferation, while agonist anti-CD40 antibody induced GADD45 upregulation and promoted apoptosis.  相似文献   

16.
17.
p14ARF inhibits the growth of p53 deficient cells in a cell-specific manner   总被引:3,自引:0,他引:3  
While p14(ARF) suppression of tumorigenesis in a p53-dependent manner is well studied, the mechanism by which p14(ARF) inhibits tumorigenesis independently of p53 remains elusive. A variety of factors have been reported to play a role in this latter process. We report here that p14(ARF) displays different effects on the anchorage-dependent and -independent growth of p53-null/Mdm2 wild type cells. p14(ARF) blocks both the anchorage-dependent and-independent (soft agar) proliferation of 293T and p53(-/-) HCT116, but not p53-null H1299 lung carcinoma cells. While p14(ARF) had no effect on the anchorage-dependent proliferation of p53(-/-) MEFs and Ras12V-transformed p53(-/-) MEFs, it inhibited the growth of Ras12V-transformed p53(-/-) MEFs in soft agar. Furthermore, ectopic expression of p14(ARF) did not lead to degradation of the E2F1 protein and did not result in the reduction of E2F1 activity detected by two E2F1 responsible promoters, Apaf1 and p14(ARF) promoter, in 293T, p53(-/-) HCT116, and H1299 cells. This is consistent with our observations that p14(ARF) did not result in G1 arrest, but induced apoptosis via Bax up-regulation. Taken together, our data demonstrate that the response of p53-null cells to ARF is cell type dependent and involves factors other than Mdm2 and E2F1.  相似文献   

18.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. However, the regulation of survivin and p53 on the quercetin-induced cell growth inhibition and apoptosis in cancer cells remains unclear. In this study, we investigated the roles of survivin and p53 in the quercetin-treated human lung carcinoma cells. Quercetin (20-80 mum for 24 h) induced the cytotoxicity and apoptosis in both A549 and H1299 lung carcinoma cells in a concentration-dependent manner. Additionally, quercetin inhibited the cell growth, increased the fractions of G(2)/M phase, and raised the levels of cyclin B1 and phospho-cdc2 (threonine 161) proteins. Moreover, quercetin induced abnormal chromosome segregation in H1299 cells. The survivin proteins were highly expressed in mitotic phase and were located on the midbody of cytokinesis; however, the survivin proteins were increased and concentrated on the nuclei following quercetin treatment in the lung carcinoma cells. Transfection of a survivin antisense oligodeoxynucleotide enhanced the quercetin-induced cell growth inhibition and cytotoxicity. Subsequently, quercetin increased the levels of total p53 (DO-1), phospho-p53 (serine 15), and p21 proteins, which were translocated to the nuclei in A549 cells. Treatment with a specific p53 inhibitor, pifithrin-alpha, or transfection of a p53 antisense oligodeoxynucleotide enhanced the cytotoxicity of the quercetin-treated cells. Furthermore, transfection of a small interfering RNA of p21 enhanced the quercetin-induced cell death in A549 cells. Together, our results suggest that survivin can reduce the cell growth inhibition and apoptosis, and p53 elevates the p21 level, which may attenuate the cell death in the quercetin-treated human lung carcinoma cells.  相似文献   

19.
Fragile histidine trail (FHIT) is a tumor suppressor in response to DNA damage which has been deleted in various tumors. However, the signaling mechanisms and interactions of FHIT with regard to apoptotic proteins including p53 and p38 in the DNA damage-induced apoptosis are not well described. In the present study, we used etoposide-induced DNA damage in MCF-7 as a model to address these crosstalks. The time course study showed that the expression of FHIT, p53, and p38MAPK started after 1 hour following etoposide treatment. FHIT overexpression led to increase p53 expression, p38 activation, and augmented apoptosis following etoposide-induced DNA damage compared to wild-type cells. However, FHIT knockdown blocked p53 expression, delayed p38 activation, and completely inhibited etoposide-induced apoptosis. Inhibition of p38 activity prevented induction of p53, FHIT, and apoptosis in this model. Thus, activation of p38 upon etoposide treatment leads to increase in FHIT and p53 expression. In p53 knockdown MCF-7, the FHIT induction was hampered but p38 activation was induced in lower doses of etoposide. In p53 knockdown cells, inhibition of p38 induced FHIT expression and apoptosis. Our data demonstrated that the exposure of MCF-7 cells to etoposide increases apoptosis through a mechanism involving the activation of the p38-FHIT-p53 pathway. Moreover, our findings suggest signaling interaction for these pathways may represent a promising therapy for breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号