首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Humans and many other hosts establish a diverse community of beneficial microbes anew each generation. The order and identity of incoming symbionts is critical for health, but what determines the success of the assembly process remains poorly understood. Here we develop ecological theory to identify factors important for microbial community assembly. Our method maps out all feasible pathways for the assembly of a given microbiome—with analogies to the mutational maps underlying fitness landscapes in evolutionary biology. Building these “assembly maps” reveals a tradeoff at the heart of the assembly process. Ecological dependencies between members of the microbiota make assembly predictable—and can provide metabolic benefits to the host—but these dependencies may also create barriers to assembly. This effect occurs because interdependent species can fail to establish when each relies on the other to colonize first. We support our predictions with published data from the assembly of the preterm infant microbiota, where we find that ecological dependence is associated with a predictable order of arrival. Our models also suggest that hosts can overcome barriers to assembly via mechanisms that either promote the uptake of multiple symbiont species in one step or feed early colonizers. This predicted importance of host feeding is supported by published data on the impacts of breast milk in the assembly of the human microbiome. We conclude that both microbe to microbe and host to microbe interactions are important for the trajectory of microbiome assembly.

Humans and many other hosts establish a diverse community of beneficial microbes anew each generation, but what determines the success of the assembly process remains poorly understood. This study develops ecological theory that reveals the rules underlying the assembly of such host-associated microbiota.  相似文献   

2.
The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.
This Perspective is part of the “Where next?” Series.
Soon, we will enter an era when “the number of population genomes deposited in public databases will dwarf those from isolates and single cells” (Gene Tyson). Clearly, as all authors noted in the following, our focus will move from describing the composition of microbial communities to elucidating the principles that govern their assembly, dynamics, and functions. How will such principles be discovered? Elhanan Borenstein proposes that a systems biology–based approach, particularly the development of mathematical and computational models of the interactions between the specific community components, will be critical for understanding the function and dynamics of microbiomes. Evolutionary biologists Howard Ochman and Andrew Moeller want to decipher how microbial assemblies evolve but challenge us to also consider the role of microbial communities in organismal evolution, and they make the exciting prediction that microbes will be implicated in the evolution of eusociality and cooperation. Brett Finlay underscores the need for deciphering the mechanistic bases—particularly the chemical/metabolite signals—for interactions between members of microbial communities and their hosts. He emphasizes how this knowledge will enable creation of new tools to manipulate the microbiota, a key challenge for future investigation. Heidi Kong also encourages deciphering the mechanisms that underlie associations between particular skin surfaces and disorders and their respective microbiota. Jeffrey Gordon considers several intriguing opportunities as well as challenges that manipulation of the gut microbiota presents for improved human nutrition and health. Finally, Karen Nelson, Karim Dabbagh and Hamilton Smith suggest that using synthetic genomes to create novel microbes or even synthetic microbiomes offers a new way to engineer the microbiota. Overall, future microbiome research regarding the molecules and mechanisms mediating interactions between members of microbial communities and their hosts should lead to discovery of exciting new biology and transformative therapeutics.  相似文献   

3.
There has been an explosion of research on host-associated microbial communities (i.e.,microbiomes). Much of this research has focused on surveys of microbial diversities across a variety of host species, including humans, with a view to understanding how these microbiomes are distributed across space and time, and how they correlate with host health, disease, phenotype, physiology and ecology. Fewer studies have focused on how these microbiomes may have evolved. In this paper, we develop an agent-based framework to study the dynamics of microbiome evolution. Our framework incorporates neutral models of how hosts acquire their microbiomes, and how the environmental microbial community that is available to the hosts is assembled. Most importantly, our framework also incorporates a Wright-Fisher genealogical model of hosts, so that the dynamics of microbiome evolution is studied on an evolutionary timescale. Our results indicate that the extent of parental contribution to microbial availability from one generation to the next significantly impacts the diversity of microbiomes: the greater the parental contribution, the less diverse the microbiomes. In contrast, even when there is only a very small contribution from a constant environmental pool, microbial communities can remain highly diverse. Finally, we show that our models may be used to construct hypotheses about the types of processes that operate to assemble microbiomes over evolutionary time.  相似文献   

4.
A fundamental aim of microbiome research is to understand the factors that influence the assembly and stability of host-associated microbiomes, and their impact on host phenotype, ecology and evolution. However, ecological and evolutionary theories applied to predict microbiome community dynamics are largely based on macroorganisms and lack microbiome-centric hypotheses that account for unique features of the microbiome. This special feature sets out to drive advancements in the application of eco-evolutionary theory to microbiome community dynamics through the development of microbiome-specific theoretical and conceptual frameworks across plant, human and non-human animal systems. The feature comprises 11 research and review articles that address: (i) the effects of the microbiome on host phenotype, ecology and evolution; (ii) the application and development of ecological and evolutionary theories to investigate microbiome assembly, diversity and stability across broad taxonomic scales; and (iii) general principles that underlie microbiome diversity and dynamics. This cross-disciplinary synthesis of theoretical, conceptual, methodological and analytical approaches to characterizing host–microbiome ecology and evolution across systems addresses key research gaps in the field of microbiome research and highlights future research priorities.  相似文献   

5.
Beneficial mutations can promote persistence via evolutionary rescue in species experiencing environmental change. However, in long-lived organisms, the pace of evolution is often too slow relative to that of environmental change for evolutionary rescue to occur. Using a spatially implicit metacommunity model, we demonstrate how interactions between slow-growing hosts and their fast-growing microbiomes can promote persistence under rapid environmental change. We show that microbial mutualists can rescue their hosts by allowing them to persist under deteriorating environmental conditions. This form of mutualist-mediated ecological rescue can be jeopardized by competitively dominant microbial cheaters, which can destabilize host population dynamics and promote the risk of stochastic extinction. However, when microbial diversity is high, (meta)community-level interactions among multiple microbial species can buffer the disruptive effect of cheaters and give rise to a more potent form of ecological rescue mediated by the entire microbiome that promotes the abundance, stability, and persistence of the host in the face of environmental change. Our results address two critical problems associated with the viability of rescue in macroorganisms: the temporal mismatch between rapid environmental change and slow organismal response and the potential disruption of rescue by microbial cheaters.  相似文献   

6.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect-microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

7.
Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called “errors-in-variables”. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct “keystone species”, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome.  相似文献   

8.
Fish Gut Microbiome: Current Approaches and Future Perspectives   总被引:1,自引:0,他引:1  
In recent years, investigations of microbial flora associated with fish gut have deepened our knowledge of the complex interactions occurring between microbes and host fish. The gut microbiome not only reinforces the digestive and immune systems in fish but is itself shaped by several host-associated factors. Unfortunately, in the past, majority of studies have focused upon the structure of fish gut microbiome providing little knowledge of effects of these factors distinctively and the immense functional potential of the gut microbiome. In this review, we have highlighted the recently gained insights into the diversity and functions of the fish gut microbiome. We have also delved on the current approaches that are being employed to study the fish gut microbiome with an aim to collate all the knowledge gained and make accurate conclusions for their application based perspectives. The literature reviewed indicated that the future research should shift towards functional microbiomics to improve the maximum sustainable yield in aquaculture.  相似文献   

9.
Evolutionary biologists typically envision a trait’s genetic basis and fitness effects occurring within a single species. However, traits can be determined by and have fitness consequences for interacting species, thus evolving in multiple genomes. This is especially likely in mutualisms, where species exchange fitness benefits and can associate over long periods of time. Partners may experience evolutionary conflict over the value of a multi-genomic trait, but such conflicts may be ameliorated by mutualism’s positive fitness feedbacks. Here, we develop a simulation model of a host–microbe mutualism to explore the evolution of a multi-genomic trait. Coevolutionary outcomes depend on whether hosts and microbes have similar or different optimal trait values, strengths of selection and fitness feedbacks. We show that genome-wide association studies can map joint traits to loci in multiple genomes and describe how fitness conflict and fitness feedback generate different multi-genomic architectures with distinct signals around segregating loci. Partner fitnesses can be positively correlated even when partners are in conflict over the value of a multi-genomic trait, and conflict can generate strong mutualistic dependency. While fitness alignment facilitates rapid adaptation to a new optimum, conflict maintains genetic variation and evolvability, with implications for applied microbiome science.  相似文献   

10.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect–microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

11.
Many methods have been developed for statistical analysis of microbial community profiles, but due to the complex nature of typical microbiome measurements (e.g. sparsity, zero-inflation, non-independence, and compositionality) and of the associated underlying biology, it is difficult to compare or evaluate such methods within a single systematic framework. To address this challenge, we developed SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic Abundances): a statistical model of microbial ecological population structure, which can be used to parameterize real-world microbial community profiles and to simulate new, realistic profiles of known structure for methods evaluation. Specifically, SparseDOSSA’s model captures marginal microbial feature abundances as a zero-inflated log-normal distribution, with additional model components for absolute cell counts and the sequence read generation process, microbe-microbe, and microbe-environment interactions. Together, these allow fully known covariance structure between synthetic features (i.e. “taxa”) or between features and “phenotypes” to be simulated for method benchmarking. Here, we demonstrate SparseDOSSA’s performance for 1) accurately modeling human-associated microbial population profiles; 2) generating synthetic communities with controlled population and ecological structures; 3) spiking-in true positive synthetic associations to benchmark analysis methods; and 4) recapitulating an end-to-end mouse microbiome feeding experiment. Together, these represent the most common analysis types in assessment of real microbial community environmental and epidemiological statistics, thus demonstrating SparseDOSSA’s utility as a general-purpose aid for modeling communities and evaluating quantitative methods. An open-source implementation is available at http://huttenhower.sph.harvard.edu/sparsedossa2.  相似文献   

12.
It is unclear how host-associated microbial communities will be affected by future environmental change. Characterizing how microbiota differ across sites with varying environmental conditions and assessing the stability of the microbiota in response to abiotic variation are critical steps towards predicting outcomes of environmental change. Intertidal organisms are valuable study systems because they experience extreme variation in environmental conditions on tractable timescales such as tide cycles and across small spatial gradients in the intertidal zone. Here we show a widespread intertidal macroalgae, Fucus distichus, hosts site-specific microbiota over small (meters to kilometres) spatial scales. We demonstrate stability of site-specific microbial associations by manipulating the host environment and microbial species pool with common garden and reciprocal transplant experiments. We hypothesized that F. distichus microbiota would readily shift to reflect the contemporary environment due to selective filtering by abiotic conditions and/or colonization by microbes from the new environment or nearby hosts. Instead, F. distichus microbiota was stable for days after transplantation in both the laboratory and field. Our findings expand the current understanding of microbiota dynamics on an intertidal foundation species. These results may also point to adaptations for withstanding short-term environmental variation, in hosts and/or microbes, facilitating stable host–microbial associations.  相似文献   

13.
Neutrophils, in cooperation with serum, are vital gatekeepers of a host’s microbiome and frontline defenders against invading microbes. Yet because human neutrophils are not amenable to many biological techniques, the mechanisms governing their immunological functions remain poorly understood. We here combine state-of-the-art single-cell experiments with flow cytometry to examine how temperature-dependent heat treatment of serum affects human neutrophil interactions with “target” particles of the fungal model zymosan. Assessing separately both the chemotactic as well as the phagocytic neutrophil responses to zymosan, we find that serum heat treatment modulates these responses in a differential manner. Whereas serum treatment at 52°C impairs almost all chemotactic activity and reduces cell-target adhesion, neutrophils still readily engulf target particles that are maneuvered into contact with the cell surface under the same conditions. Higher serum-treatment temperatures gradually suppress phagocytosis even after enforced cell-target contact. Using fluorescent staining, we correlate the observed cell behavior with the amounts of C3b and IgG deposited on the zymosan surface in sera treated at the respective temperatures. This comparison not only affirms the critical role of complement in chemotactic and adhesive neutrophil interactions with fungal surfaces, but also unmasks an important participation of IgGs in the phagocytosis of yeast-like fungal particles. In summary, this study presents new insight into fundamental immune mechanisms, including the chemotactic recruitment of immune cells, the adhesive capacity of cell-surface receptors, the role of IgGs in fungal recognition, and the opsonin-dependent phagocytosis morphology of human neutrophils. Moreover, we show how, by fine-tuning the heat treatment of serum, one can selectively study chemotaxis or phagocytosis under otherwise identical conditions. These results not only refine our understanding of a widely used laboratory method, they also establish a basis for new applications of this method.  相似文献   

14.
Studying the cross talk between nonpathogenic organisms and their mammalian hosts represents an experimental challenge because these interactions are typically subtle and the microbial societies that associate with mammalian hosts are very complex and dynamic. A large, functionally stable, climax community of microbes is maintained in the murine and human gastrointestinal tracts. This open ecosystem exhibits not only regional differences in the composition of its microbiota but also regional differences in the differentiation programs of its epithelial cells and in the spatial distribution of its component immune cells. A key experimental strategy for determining whether “nonpathogenic” microorganisms actively create their own regional habitats in this ecosystem is to define cellular function in germ-free animals and then evaluate the effects of adding single or several microbial species. This review focuses on how gnotobiotics—the study of germ-free animals—has been and needs to be used to examine how the gastrointestinal ecosystem is created and maintained. Areas discussed include the generation of simplified ecosystems by using genetically manipulatable microbes and hosts to determine whether components of the microbiota actively regulate epithelial differentiation to create niches for themselves and for other organisms; the ways in which gnotobiology can help reveal collaborative interactions among the microbiota, epithelium, and mucosal immune system; and the ways in which gnotobiology is and will be useful for identifying host and microbial factors that define the continuum between nonpathogenic and pathogenic. A series of tests of microbial contributions to several pathologic states, using germ-free and ex-germ-free mice, are proposed.  相似文献   

15.
With the increasing appreciation for the crucial roles that microbial symbionts play in the development and fitness of plant and animal hosts, there has been a recent push to interpret evolution through the lens of the “hologenome”—the collective genomic content of a host and its microbiome. But how symbionts evolve and, particularly, whether they undergo natural selection to benefit hosts are complex issues that are associated with several misconceptions about evolutionary processes in host-associated microbial communities. Microorganisms can have intimate, ancient, and/or mutualistic associations with hosts without having undergone natural selection to benefit hosts. Likewise, observing host-specific microbial community composition or greater community similarity among more closely related hosts does not imply that symbionts have coevolved with hosts, let alone that they have evolved for the benefit of the host. Although selection at the level of the symbiotic community, or hologenome, occurs in some cases, it should not be accepted as the null hypothesis for explaining features of host–symbiont associations.The ubiquity and importance of microorganisms in the lives of plants and animals are ever more apparent, and increasingly investigated by biologists. Suddenly, we have the aspiration and tools to open up a new, complicated world, and we must confront the realization that almost everything about larger organisms has been shaped by their history of evolving from, then with, microorganisms [1]. This development represents a dramatic shift in perspective—arguably a revolution—in modern biology.Do we need to revamp basic tenets of evolutionary theory to understand how hosts evolve with associated microorganisms? Some scientists have suggested that we do [2], and the recently introduced terms “holobiont” and “hologenome” encapsulate what has been described as an “emerging postmodern synthesis” [3]. Holobiont was initially used to refer to a host and a single inherited symbiont [4] but was later extended to a host and its community of associated microorganisms, specifically for the case of corals [5]. The idea of the holobiont is that a host and its associated microorganisms must be considered as an integrated unit in order to understand many biological and ecological features.The later introduction of the term hologenome [2,6,7] sought to describe a holobiont by its genetic composition. The term has been used in different ways by different authors, but in most contexts a hologenome is considered a genetic unit that represents the combined genomes of a host and its associated microorganisms [8]. This non-controversial definition of hologenome is linked to the idea that this entity has a role in evolution. For example, Gordon et al. [1,9] state, "The genome of a holobiont, termed the hologenome, is the sum of the genomes of all constituents, all of which can evolve within that context." That last phrase is sufficiently general that it can be interpreted in any number of ways. Like physical conditions, associated organisms can be considered as part of the environment and thus can be sources of natural selection, affecting evolution in each lineage.But a more sweeping and problematic proposal is given by originators of the term, which is that "the holobiont with its hologenome should be considered as the unit of natural selection in evolution" [2,7] or by others, that “an organism’s genetics and fitness are inclusive of its microbiome” [3,4]. The implication is that differential success of holobionts influences evolution of participating organisms, such that their observed features cannot be fully understood without considering selection at the holobiont level. Another formulation of this concept is the proposal that the evolution of host–microbe systems is “most easily understood by equating a gene in the nuclear genome to a microbe in the microbiome” [8]. Under this view, interactions between host and microbial genotypes should be considered as genetic epistasis (interactions among alleles at different loci in a genome) rather than as interactions between the host’s genotype and its environment.While biologists would agree that microorganisms have important roles in host evolution, this statement is a far cry from the claim that they are fused with hosts to form the primary units of selection, or that hosts and microorganisms provide different portions of a unified genome. Broadly, the hologenome concept contends, first, that participating lineages within a holobiont affect each other’s evolution, and, second, that that the holobiont is a primary unit of selection. Our aim in this essay is to clarify what kinds of evidence are needed for each of these claims and to argue that neither should be assumed without evidence. We point out that some observations that superficially appear to support the concept of the hologenome have spawned confusion about real biological issues (Box 1).

Box 1. Misconceptions Related to the Hologenome Concept

Misconception #1: Similarities in microbiomes between related host species result from codiversification. Reality: Related species tend to be similar in most traits. Because microbiome composition is a trait that involves living organisms, it is tempting to assume that these similarities reflect a shared evolutionary history of host and symbionts. This has been shown to be the case for some symbioses (e.g., ancient maternally inherited endosymbionts in insects). But for many interactions (e.g., gut microbiota), related hosts may have similar effects on community assembly without any history of codiversification between the host and individual microbial species (Fig 1B).Open in a separate windowFig 1Alternative evolutionary processes can result in related host species harboring similar symbiont communities.Left panel: Individual symbiont lineages retain fidelity to evolving host lineages, through co-inheritance or other mechanisms, with some gain and loss of symbiont lineages over evolutionary time. Right panel: As host lineages evolve, they shift their selectivity of environmental microbes, which are not evolving in response and which may not even have been present during host diversification. In both cases, measures of community divergence will likely be smaller for more closely related hosts, but they reflect processes with very different implications for hologenome evolution. Image credit: Nancy Moran and Kim Hammond, University of Texas at Austin. Misconception #2: Parallel phylogenies of host and symbiont, or intimacy of host and symbiont associations, reflect coevolution. Reality: Coevolution is defined by a history of reciprocal selection between parties. While coevolution can generate parallel phylogenies or intimate associations, these can also result from many other mechanisms. Misconception #3: Highly intimate associations of host and symbionts, involving exchange of cellular metabolites and specific patterns of colonization, result from a history of selection favoring mutualistic traits. Reality: The adaptive basis of a specific trait is difficult to infer even when the trait involves a single lineage, and it is even more daunting when multiple lineages contribute. But complexity or intimacy of an interaction does not always imply a long history of coevolution nor does it imply that the nature of the interaction involves mutual benefit. Misconception #4: The essential roles that microbial species/communities play in host development are adaptations resulting from selection on the symbionts to contribute to holobiont function. Reality: Hosts may adapt to the reliable presence of symbionts in the same way that they adapt to abiotic components of the environment, and little or no selection on symbiont populations need be involved. Misconception #5: Because of the extreme importance of symbionts in essential functions of their hosts, the integrated holobiont represents the primary unit of selection. Reality: The strength of natural selection at different levels of biological organization is a central issue in evolutionary biology and the focus of much empirical and theoretical research. But insofar as there is a primary unit of selection common to diverse biological systems, it is unlikely to be at the level of the holobiont. In particular cases, evolutionary interests of host and symbionts can be sufficiently aligned such that the predominant effect of natural selection on genetic variation in each party is to increase the reproductive success of the holobiont. But in most host–symbiont relationships, contrasting modes of genetic transmission will decouple selection pressures.  相似文献   

16.
Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease.  相似文献   

17.
The coalescence of next-generation DNA sequencing methods, ecological perspectives, and bioinformatics analysis tools is rapidly advancing our understanding of the evolution and function of vertebrate-associated bacterial communities. Delineation of host-microbe associations has applied benefits ranging from clinical treatments to protecting our natural waters. Microbial communities follow some broad-scale patterns observed for macroorganisms, but it remains unclear how the specialization of intestinal vertebrate-associated communities to a particular host environment influences broad-scale patterns in microbial abundance and distribution. We analyzed the V6 region of 16S rRNA genes amplified from 106 fecal samples spanning Aves, Mammalia, and Actinopterygii (ray-finned fish). We investigated the interspecific abundance-occupancy relationship, where widespread taxa tend to be more abundant than narrowly distributed taxa, among operational taxonomic units (OTUs) within and among host species. In a separate analysis, we identified specialist OTUs that were highly abundant in a single host and rare in all other hosts by using a multinomial model without excluding undersampled OTUs a priori. We show that intestinal microbes in humans and other vertebrates display abundance-occupancy relationships, but because intestinal host-associated communities have undergone intense specialization, this trend is violated by a disproportionately large number of specialist taxa. Although it is difficult to distinguish the effects of dispersal limitations, host selection, historical contingency, and stochastic processes on community assembly, results suggest that intestinal bacteria can be shared among diverse hosts in ways that resemble the distribution of “free-living” bacteria in the extraintestinal environment.  相似文献   

18.
Beneficial cutaneous bacteria on amphibians can protect against the lethal disease chytridiomycosis, which has devastated many amphibian species and is caused by the fungus Batrachochytrium dendrobatidis. We describe the diversity of bacteria on red-backed salamanders (Plethodon cinereus) in the wild and the stability of these communities through time in captivity using culture-independent Illumina 16S rRNA gene sequencing. After field sampling, salamanders were housed with soil from the field or sterile media. The captive conditions led to different trajectories of bacterial communities. Eight OTUs present on >90% of salamanders in the field, through time, and in both treatments were defined as the core community, suggesting that some bacteria are closely associated with the host and are independent of an environmental reservoir. One of these taxa, a Pseudomonas sp., was previously cultured from amphibians and found to be antifungal. As all host-associated bacteria were found in the soil reservoir, environmental microbes strongly influence host–microbial diversity and likely regulate the core community. Using PICRUSt, an exploratory bioinformatics tool to predict gene functions, we found that core skin bacteria provided similar gene functions to the entire community. We suggest that future experiments focus on testing whether core bacteria on salamander skin contribute to the observed resistance to chytridiomycosis in this species even under hygenic captive conditions. For disease-susceptible hosts, providing an environmental reservoir with defensive bacteria in captive-rearing programs may improve outcomes by increasing bacterial diversity on threatened amphibians or increasing the likelihood that defensive bacteria are available for colonization.  相似文献   

19.
20.
Non-target organisms are globally exposed to herbicides. While many herbicides – for example, glyphosate – were initially considered safe, increasing evidence demonstrates that they have profound effects on ecosystem functions via altered microbial communities. We provide a comprehensive framework on how herbicide residues may modulate ecosystem-level outcomes via alteration of microbiomes. The changes in soil microbiome are likely to influence key nutrient cycling and plant–soil processes. Herbicide-altered microbiome affects plant and animal performance and can influence trophic interactions such as herbivory and pollination. These changes are expected to lead to ecosystem and even evolutionary consequences for both microbes and hosts. Tackling the threats caused by agrochemicals to ecosystem functions and services requires tools and solutions based on a comprehensive understanding of microbe-mediated risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号