首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most oocytes eliminate their centrioles during meiotic divisions through unclear mechanisms. In this issue, Borrego-Pinto et al. (2016. J Cell. Biol. http://dx.doi.org/10.1083/jcb.201510083) show that mother centrioles need to be eliminated from starfish oocytes by extrusion into the polar bodies for successful embryo development.Canonical centrosomes contain a pair of centrioles, often made of nine triplets of microtubules and surrounded by the pericentriolar material (PCM). They are the major microtubule organizing centers in most cells, which organize the microtubule spindle required to segregate chromosomes during cell division. Yet, most oocytes get rid of their centrioles. The biological significance of oocyte centriole riddance remains a mystery. Removing centrioles in oocytes could prevent some species, like Xenopus, from undergoing parthenogenetic development (Tournier et al., 1991). Also, eliminating the maternal centrioles is required to prevent the zygote from having an abnormal number of centrioles after fertilization, as sperm contribute two centrioles (motile sperm cells require centriole-based flagellar assembly and must retain their centrioles until fertilization [Manandhar et al., 2005]). In Drosophila, Xenopus, nematode, mouse, and human oocytes, egg centrioles are eliminated during meiotic prophase before oocyte asymmetric divisions (Szollosi et al., 1972; Manandhar et al., 2005; Januschke et al., 2006). Apart from the involvement of a helicase of undefined substrates, the pathway leading to centriole elimination has not been identified (Mikeladze-Dvali et al., 2012).In contrast, starfish oocytes, like sea urchin or mollusk, eliminate their centrioles later in meiotic divisions (Nakashima and Kato, 2001; Shirato et al., 2006). Centrioles are replicated in a semiconservative manner during the S phase of the cell cycle. The old centriole, named the mother, is characterized by the presence of distal and subdistal appendages and serves as a template for the assembly of a new daughter centriole, lacking appendages (Bornens and Gönczy, 2014). However, to become haploid, oocytes undergo two consecutive divisions with no intervening DNA replication. Hence, centrioles are not duplicated between the two meiotic divisions and oocytes keep their number of centrioles limited to four. This also means that starfish oocytes assemble their first meiotic spindle in the presence of a pair of centrioles at each pole (Fig. 1 A). Out of the four centrioles contained in the oocyte, two (one mother and one daughter centriole) are extruded into the first polar body during the first asymmetric division. Subsequently, the second meiotic spindle is formed with only one centriole per pole (Fig. 1 A), and one centriole is extruded in the second polar body. Previous work suggested that the poles of the second meiotic spindle in starfish are not functionally equivalent (Uetake et al., 2002). In this issue, Borrego-Pinto et al. find that the mother centriole retains the ability to nucleate asters but is specifically guided into the second polar body for extrusion, whereas the daughter centriole is inactivated and then eliminated within the oocyte.Open in a separate windowFigure 1.Centriole elimination during meiotic maturation of starfish oocytes. (A) Scheme of starfish oocyte meiotic divisions and early egg development. Oocyte divisions are asymmetric in size; meiotic spindles are off-centered in these large cells; and daughter cells are tiny, tailored to the chromatin mass, and named polar bodies. Microtubules are green, DNA is pink, maternal centrosomes are yellow, and sperm centrosomes are orange. (B) Fate of mother and daughter centrioles during meiotic divisions. Centrosomes are artificially enlarged to emphasize the centrioles. PB1 and PB2, first and second polar body, respectively. During anaphase I, the DNA and centrioles are segregated; one set of chromosomes and one pair of centrioles are extruded into PB1 during anaphase I. The remaining mother centriole separates from its paired daughter and rapidly moves toward the plasma membrane, where it is extruded in the second polar body (PB2) during anaphase II, leaving one set of oocyte chromatids to combine with the sperm chromatids. The remaining oocyte daughter centriole is inactivated and degraded after anaphase II. Therefore, only the sperm centrioles form the first mitotic spindle in the fertilized oocyte. Oocytes forced to retain a mother centriole form a tripolar aster upon fertilization, which stops development.To investigate the mechanism of centriole elimination in the starfish Patiria miniata, Borrego-Pinto et al. (2016) first isolated homologues of centrosomal proteins and constructed fluorescent protein fusions to several centriolar proteins to track centriole fate in 3D time-lapse imaging during oocyte asymmetric divisions. Using specific markers of mother versus daughter centrioles, they established that, in meiosis I, the two spindle poles are equivalent, being constituted of a pair of mother and daughter centrioles. At anaphase I, one pair of mother/daughter centrioles is extruded into the first polar body. Importantly, the authors described an asymmetry in metaphase II, with the second meiotic spindle always having the mother centriole facing the cortex and the daughter centriole deep inside the cytoplasm (Fig. 1 B).Borrego-Pinto et al. (2016) went on to identify the origin of this asymmetry. They show that the mother centriole, but not the daughter one, starts being rapidly transported toward the plasma membrane before completion of meiosis I spindle disassembly in a microtubule- and dynein-dependent manner, as its trafficking could be impaired by the dynein inhibitor ciliobrevin D (Firestone et al., 2012). In a second step, the mother centriole is anchored to the plasma membrane through the second meiotic division. Interestingly, electron microscopy of starfish oocytes revealed electron-dense material as well as vesicles between the mother centriole and the plasma membrane, suggesting that the mother centriole’s plasma membrane anchorage occurs via its appendages (Reiter et al., 2012; Stinchcombe et al., 2015). Whether the mother centriole migrates to the cortex with its appendages facing or opposite the plasma membrane has not been addressed. However, it is reasonable to assume that, in a viscous environment such as the oocyte cytoplasm, a motion with the appendages up would be favored (Fig. 1 B). Moreover, whereas the migration of the mother centriole to the plasma membrane requires microtubules, its anchoring does not depend on microtubules or microfilaments, as shown by the continued tight association between the centriole and the membrane in the presence of microtubule- and/or actin-depolymerizing agents. This close anchoring via the centriole’s appendages is reminiscent of the anchoring of centrioles forming cilia or at the immunological synapse in T cells (Stinchcombe et al., 2015). The precise mechanisms involved in mother centriole anchoring to the plasma membrane in starfish might be conserved in other systems that also require proximity between these two structures. It would be interesting to assess whether astral microtubules emanating from the mother centriole progressively depolymerize as the mother centriole approaches the plasma membrane to allow the intimate anchoring of the appendages with the plasma membrane. If so, Katanin, a microtubule-severing enzyme whose activity is regulated during meiotic divisions in the nematode oocyte, would be a good candidate to promote such a progressive destabilization (Srayko et al., 2000).Future work will tell us why the daughter centriole does not experience such a migration event. This strongly argues for a functional asymmetry between the two types of centrioles. From the work of Borrego-Pinto et al. (2016), it appears that the daughter centriole is passively pushed inside the oocyte cytoplasm as a result of meiosis II spindle assembly and elongation. Dynein, which controls the migration of the mother centriole, could specifically associate with this centriole, like it does in Saccharomyces cerevisiae, by localizing preferentially to the spindle pole body (the yeast equivalent of the centrosome) facing the bud (Grava et al., 2006). Centrosome asymmetry has been described in several stem cell types (Roubinet and Cabernard, 2014) and this asymmetry is often rooted in its activity. However, Borrego-Pinto et al. (2016) show that the microtubule nucleation capacity of the daughter and mother centrioles is equivalent up to the metaphase II stage. It is only after fertilization and anaphase II that a difference in activity is detected between the mother and daughter centrioles. Thus, what underlies the asymmetry in behavior between the mother and daughter centrioles at anaphase I remains to be discovered. One possibility is that the presence of appendages in the mother centriole allows the recruitment of specific factors, such as dynein, which in turn regulate mother centriole migration and anchoring.Borrego-Pinto et al. (2016) also discovered that specific anchoring of the mother centriole to the plasma membrane, at which the second polar body will form, is the mechanism by which oocytes get rid of the remaining mother centriole. Importantly, actively removing the mother centriole after anaphase II is essential for zygotic development. Indeed, the researchers used the actin polymerization inhibitor cytochalasin D to prevent extrusion of the second polar body and artificially retain the mother centriole in the oocyte after anaphase II. When a mother centriole is retained, it keeps its microtubule nucleation capacity and participates in the first mitotic spindle pole organization of the fertilized egg, whereas the daughter centriole is inactivated and dismantled after anaphase II. As a consequence, because of the two centrioles contributed by the sperm cell, the mitotic spindle ends up being tripolar in the presence of an additional mother centriole, precluding correct chromosome segregation and further development (Fig. 1 B).The origin of the difference in behavior between mother and daughter centrioles after anaphase II will require further investigation. To explain the loss in nucleation capacity of the daughter centriole, it will be important to check for the presence of various PCM components. Indeed, it is reasonable to assume that the daughter centriole loses its PCM association. PCM size scales with centriole size; thus, appendages of the mother centriole might possess an innate ability to maintain association with the PCM (Bobinnec et al., 1998; Delattre et al., 2004). A possible cell cycle–dependent enzymatic activity appearing after anaphase II might explain the rapid loss in microtubule nucleation capacity of the daughter centriole. It is surprising that the starfish zygote cannot cluster the mother centriole material with the centrioles from the sperm, unlike mouse oocytes, which, like cancer cells, are able to cluster PCM to regulate the total number of microtubule organizing centers (Kwon et al., 2008; Breuer et al., 2010). It will be interesting to determine whether starfish zygotes express proteins such as HURP or HSET, which are major players in extra-centrosome clustering (Kwon et al., 2008; Breuer et al., 2010).Altogether, the results from Borrego-Pinto et al. (2016) address a major unresolved question: why do oocytes lose or inactivate their canonical centrioles during female meiosis? They show for the first time that maternal centrioles must be extruded from or inactivated in the starfish egg before fertilization so that they do not perturb mitotic spindle assembly. This is a very important step in our understanding of female gamete formation. Moreover, this work establishes starfish oocyte meiosis as a novel model system to study both functional and structural centrosome asymmetry, an essential component of asymmetric divisions.  相似文献   

2.
Most animals have two centrioles in spermatids (the distal and proximal centrioles), but insect spermatids seem to contain only one centriole (Fuller 1993), which functionally resembles the distal centriole. Using fluorescent centriolar markers, we identified a structure near the fly distal centriole that is reminiscent of a proximal centriole (i.e., proximal centriole-like, or PCL). We show that the PCL exhibits several features of daughter centrioles. First, a single PCL forms near the proximal segment of the older centriole. Second, the centriolar proteins SAS-6, Ana1, and Bld10p/Cep135 are in the PCL. Third, PCL formation depends on SAK/PLK4 and SAS-6. Using a genetic screen for PCL defect, we identified a mutation in the gene encoding the conserved centriolar protein POC1, which is part of the daughter centriole initiation site (Kilburn et al. 2007) in Tetrahymena. We conclude that the PCL resembles an early intermediate structure of a forming centriole, which may explain why no typical centriolar structure is observed under electron microscopy. We propose that, during the evolution of insects, the proximal centriole was simplified by eliminating the later steps in centriole assembly. The PCL may provide a unique model to study early steps of centriole formation.THE centriole is a cylindrical structure rich in microtubules, which are organized in a ninefold symmetry. As the template of the ciliary axoneme, the centriole transmits its symmetry to the cilium. Dividing cells contain two centrosomes at the cell poles, each containing a pair of centrioles (mother and daughter centrioles) surrounded by a thick layer of pericentriolar material (PCM). Upon differentiation, the mother centriole of each pair becomes a basal body, which acts as a template for the cilium (Azimzadeh and Bornens 2007). The function of the daughter centriole is less clear. For example, in animal spermatids, the mother centriole, known as the distal centriole, becomes a basal body and gives rise to the sperm flagellum (Krioutchkova and Onishchenko 1999; Sathananthan et al. 2001). The daughter centriole in spermatids, known as the proximal centriole, is attached to the nucleus.Unlike other animal groups, multiple ultrastructural studies of insect sperm find only one centriole that has the canonical structure of microtubules organized in a ninefold symmetry (Anderson 1967; Tates 1971; Tokuyasu 1975a,b). This centriole forms the flagellum and is therefore the homolog to the vertebrate distal centriole. During spermatid differentiation (Figure 2A), a structure, called the centriolar adjunct (CA), appears transiently around this centriole (Friedlander and Wahrman 1971; Tates 1971; Tokuyasu 1975a,b; Wilson et al. 1997). The centriolar adjunct is a very dynamic structure, which shrinks during spermatid differentiation to form a collar around the distal centriole and then disappears (Tates 1971; Wilson et al. 1997). Studies using light microscopy found that γ-tubulin localizes and redistributes around the centriole in a way similar to the CA (Wilson et al. 1997), suggesting that it may serve as its marker. Earlier electron microscopy (EM) studies describe the appearance of a centriole inside the centriolar adjunct after it obtains the collar-shape structure (Anderson 1967; Phillips 1970). But this structure is amorphous and does not exhibit the morphological features of a centriole. Interestingly, the earliest intermediate observed during centriole formation is described as an amorphous structure (Anderson 1967; Dippell 1968; Sorokin 1968; Allen 1969).Open in a separate windowFigure 2.—Ana1 labels a novel structure appearing near the mother centriole in spermatids. (A) Diagram depicting the different stages of spermatid development based on the observations of Tates (1971). (M, mitochondria; N, nucleus; Ax, axoneme). The basal body or giant centriole (Cen) is surrounded by the centriolar adjunct (CA) and, near it, we can follow the formation of the PCL. (B) We use phase-contrast pictures (unfixed testis) to determine the spermatid stage. The onion stage (stage S13) is characterized by a round nucleus (N) of the same size as the mitochondrial derivatives (M). The cell body of intermediate spermatids (stages 15 and 16) elongates, forming short protrusions (arrows), but the nucleus remains round. In late spermatid development (stage 17), the nucleus becomes oval. Ana1-GFP labels the giant centriole (Cen), and in intermediate spermatids a bulge forms on one side and becomes individualized as PCL in late spermatid development. (C) Staining with anti-γ-tubulin antibody shows that the PCL labeled by Ana1 is an entity different from the γ-tubulin collar that is reminiscent of the centriolar adjunct (CA). (D) Antibody against Ana1 labels the V-shape pair of giant centrioles in primary spermatocytes (left) and the giant centriole and PCL in spermatids (right) in flies expressing Ana1-GFP. (E) In wild-type primary spermatocytes, anti-Ana1 antibody stains the endogenous protein in the giant centrioles and colocalizes with γ-tubulin staining (left). In spermatids, the antibody labels the PCL, demonstrating that its formation is not due to centriolar protein overexpression (right).Centriole duplication provides the cell with a mechanism for tightly controlling the number of centrosomes and cilia. In most cells, the centriole duplicates once per cell cycle and a single new centriole is formed in the vicinity of each mother centriole. The mechanism ensuring that only one daughter centriole forms in the vicinity of the mother centriole is not known (Strnad and Gonczy 2008). Two major limiting factors hinder the investigation of this process: (1) the difficulty of distinguishing between the mother centriole and the forming daughter centriole and (2) the short time that it takes for the process to reach completion, which in turn hinders the identification of intermediates. Few model systems are currently available for studying this process (Pelletier et al. 2006; Kleylein-Sohn et al. 2007).Here, we demonstrate that fly spermatids contain a novel structure that is labeled by centriolar proteins and that forms in the vicinity of the proximal end of the mother centriole. Because it is reminiscent of the vertebrate proximal centriole but no morphological signatures of a centriole have been observed, we propose to call it proximal centriole-like (PCL). While studying the pan-centriolar protein Ana1, we found that it labeled the PCL. The PCL forms before γ-tubulin is redistributed as a collar, showing that it is a distinct entity. We then found that the formation of the PCL depends on the proteins SAK/PLK4 and SAS-6, which are essential early in daughter centriole formation, but not on SAS-4, which in worms is required later in the process. These observations indicate that the PCL represents an early intermediate structure in centriole formation. We also tested the involvement of the centriolar protein Bld10p/Cep135, which was found in Chlamydomonas and humans to be a component of the centriole cartwheel and wall (Hiraki et al. 2007; Kleylein-Sohn et al. 2007). We found that Bld10p is recruited to the PCL only later in the process and is not required for PCL formation. We performed a genetic screen finding that the Drosophila ortholog of POC1 is essential for the formation of normal PCL. POC1 was identified previously in a proteomic screen as a centriolar protein and is localized to the early intermediate structure in centriole/basal body formation (Keller et al. 2005, 2008; Kilburn et al. 2007). We propose to use PCL formation as a model to study the molecular pathway for centriole initiation. Our results suggest that POC1, like PLK4 and SAS-6, plays an important role early in centriole formation whereas Bld10p function is required later as SAS-4 is.  相似文献   

3.
4.
The DNA mismatch repair (MMR) system is a major DNA repair system that corrects DNA replication errors. In eukaryotes, the MMR system functions via mechanisms both dependent on and independent of exonuclease 1 (EXO1), an enzyme that has multiple roles in DNA metabolism. Although the mechanism of EXO1-dependent MMR is well understood, less is known about EXO1-independent MMR. Here, we provide genetic and biochemical evidence that the DNA2 nuclease/helicase has a role in EXO1-independent MMR. Biochemical reactions reconstituted with purified human proteins demonstrated that the nuclease activity of DNA2 promotes an EXO1-independent MMR reaction via a mismatch excision-independent mechanism that involves DNA polymerase δ. We show that DNA polymerase ε is not able to replace DNA polymerase δ in the DNA2-promoted MMR reaction. Unlike its nuclease activity, the helicase activity of DNA2 is dispensable for the ability of the protein to enhance the MMR reaction. Further examination established that DNA2 acts in the EXO1-independent MMR reaction by increasing the strand-displacement activity of DNA polymerase δ. These data reveal a mechanism for EXO1-independent mismatch repair.

The mismatch repair (MMR) system has been conserved from bacteria to humans (1, 2). It promotes genome stability by suppressing spontaneous and DNA damage-induced mutations (1, 3, 4, 5, 6, 7, 8, 9, 10, 11). The key function of the MMR system is the correction of DNA replication errors that escape the proofreading activities of replicative DNA polymerases (1, 4, 5, 6, 7, 8, 9, 10, 12). In addition, the MMR system removes mismatches formed during strand exchange in homologous recombination, suppresses homeologous recombination, initiates apoptosis in response to irreparable DNA damage caused by several anticancer drugs, and contributes to instability of triplet repeats and alternative DNA structures (1, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18). The principal components of the eukaryotic MMR system are MutSα (MSH2-MSH6 heterodimer), MutLα (MLH1-PMS2 heterodimer in humans and Mlh1-Pms1 heterodimer in yeast), MutSβ (MSH2-MSH3 heterodimer), proliferating cell nuclear antigen (PCNA), replication factor C (RFC), exonuclease 1 (EXO1), RPA, and DNA polymerase δ (Pol δ). Loss-of-function mutations in the MSH2, MLH1, MSH6, and PMS2 genes of the human MMR system cause Lynch and Turcot syndromes, and hypermethylation of the MLH1 promoter is responsible for ∼15% of sporadic cancers in several organs (19, 20). MMR deficiency leads to cancer initiation and progression via a multistage process that involves the inactivation of tumor suppressor genes and action of oncogenes (21).MMR occurs behind the replication fork (22, 23) and is a major determinant of the replication fidelity (24). The correction of DNA replication errors by the MMR system increases the replication fidelity by ∼100 fold (25). Strand breaks in leading and lagging strands as well as ribonucleotides in leading strands serve as signals that direct the eukaryotic MMR system to remove DNA replication errors (26, 27, 28, 29, 30). MMR is more efficient on the lagging than the leading strand (31). The substrates for MMR are all six base–base mismatches and 1 to 13-nt insertion/deletion loops (25, 32, 33, 34). Eukaryotic MMR commences with recognition of the mismatch by MutSα or MutSβ (32, 34, 35, 36). MutSα is the primary mismatch-recognition factor that recognizes both base–base mismatches and small insertion/deletion loops whereas MutSβ recognizes small insertion/deletion loops (32, 34, 35, 36, 37). After recognizing the mismatch, MutSα or MutSβ cooperates with RFC-loaded PCNA to activate MutLα endonuclease (38, 39, 40, 41, 42, 43). The activated MutLα endonuclease incises the discontinuous daughter strand 5′ and 3′ to the mismatch. A 5'' strand break formed by MutLα endonuclease is utilized by EXO1 to enter the DNA and excise a discontinuous strand portion encompassing the mismatch in a 5''→3′ excision reaction stimulated by MutSα/MutSβ (38, 44, 45). The generated gap is filled in by the Pol δ holoenzyme, and the nick is ligated by a DNA ligase (44, 46, 47). DNA polymerase ε (Pol ε) can substitute for Pol δ in the EXO1-dependent MMR reaction, but its activity in this reaction is much lower than that of Pol δ (48). Although MutLα endonuclease is essential for MMR in vivo, 5′ nick-dependent MMR reactions reconstituted in the presence of EXO1 are MutLα-independent (44, 47, 49).EXO1 deficiency in humans does not seem to cause significant cancer predisposition (19). Nevertheless, it is known that Exo1-/- mice are susceptible to the development of lymphomas (50). Genetic studies in yeast and mice demonstrated that EXO1 inactivation causes only a modest defect in MMR (50, 51, 52, 53). In agreement with these genetic studies, a defined human EXO1-independent MMR reaction that depends on the strand-displacement DNA synthesis activity of Pol δ holoenzyme to remove the mismatch was reconstituted (54). Furthermore, an EXO1-independent MMR reaction that occurred in a mammalian cell extract system without the formation of a gapped excision intermediate was observed (54). Together, these findings implicated the strand-displacement activity of Pol δ holoenzyme in EXO1-independent MMR.In this study, we investigated DNA2 in the context of MMR. DNA2 is an essential multifunctional protein that has nuclease, ATPase, and 5''→3′ helicase activities (55, 56, 57). Previous research ascertained that DNA2 removes long flaps during Okazaki fragment maturation (58, 59, 60), participates in the resection step of double-strand break repair (61, 62, 63), initiates the replication checkpoint (64), and suppresses the expansions of GAA repeats (65). We have found in vivo and in vitro evidence that DNA2 promotes EXO1-independent MMR. Our data have indicated that the nuclease activity of DNA2 enhances the strand-displacement activity of Pol δ holoenzyme in an EXO1-independent MMR reaction.  相似文献   

5.
Necroptosis is a caspase-independent form of regulated cell death that has been implicated in the development of a range of inflammatory, autoimmune and neurodegenerative diseases. The pseudokinase, Mixed Lineage Kinase Domain-Like (MLKL), is the most terminal known obligatory effector in the necroptosis pathway, and is activated following phosphorylation by Receptor Interacting Protein Kinase-3 (RIPK3). Activated MLKL translocates to membranes, leading to membrane destabilisation and subsequent cell death. However, the molecular interactions governing the processes downstream of RIPK3 activation remain poorly defined. Using a phenotypic screen, we identified seven heat-shock protein 90 (HSP90) inhibitors that inhibited necroptosis in both wild-type fibroblasts and fibroblasts expressing an activated mutant of MLKL. We observed a modest reduction in MLKL protein levels in human and murine cells following HSP90 inhibition, which was only apparent after 15 h of treatment. The delayed reduction in MLKL protein abundance was unlikely to completely account for defective necroptosis, and, consistent with this, we also found inhibition of HSP90 blocked membrane translocation of activated MLKL. Together, these findings implicate HSP90 as a modulator of necroptosis at the level of MLKL, a function that complements HSP90''s previously demonstrated modulation of the upstream necroptosis effector kinases, RIPK1 and RIPK3.Necroptosis is an inflammatory, caspase-independent form of regulated cell death characterised by loss of cellular membrane integrity and release of cytoplasmic contents.1 It is believed to have evolved as a defence mechanism against viruses;2, 3 however, there is increasing evidence that deregulated necroptosis has a role in the pathogenesis of a range of inflammatory, autoimmune and neurodegenerative diseases.4, 5, 6, 7, 8 Reduced capacity to undergo necroptosis has been correlated to increased aggressiveness of cancers;9, 10 and therapeutic initiation of necroptosis is currently being investigated as a cancer therapy.11, 12 Additionally, there is emerging evidence that the necroptotic signalling pathway has a general role in the modulation of inflammation.13, 14, 15, 16, 17 As such, unravelling the molecular events governing necroptosis, and potential avenues for therapeutic intervention, is of enormous interest.Necroptosis is initiated through activation of death receptors, such as Tumour Necrosis Factor Receptor 1 (TNFR1), or through microbial activation of pattern recognition receptors, such as Toll-like receptors or intracellular viral DNA sensors.3, 18, 19, 20 Receptor ligation initiates a signalling cascade, whereby Receptor Interacting Protein Kinase (RIPK)-3 oligomerises and is phosphorylated, a process known to be regulated by association with other effectors, such as the protein kinase RIPK1, TIR-domain-containing adapter-inducing IFN-β (TRIF), or DNA-dependent activator of IFN regulatory factors (DAI), via their RIP Homotypic Interaction Motifs (RHIMs).2, 21, 22 Once activated, RIPK3 phosphorylates the pseudokinase domain of Mixed Lineage Kinase domain-Like (MLKL), the most downstream known obligate effector of the necroptotic signalling pathway, to induce its activation.23, 24 MLKL phosphorylation is thought to trigger a molecular switch,25, 26, 27 leading to the unleashing of the N-terminal executioner four-helix bundle (4HB) domain,28 MLKL oligomerisation and translocation to cellular membranes where cell death occurs via an incompletely-understood mechanism.28, 29, 30Molecular chaperones have an integral role in modulating both the structure and function of proteins. One such chaperone is heat-shock protein 90 (HSP90), which interacts with a diverse group of protein ‘clients'', the largest group comprising the kinases and pseudokinases, with 50% of the human kinome estimated to interact with HSP90.31 These interactions are dependent on the recognition of the kinase or pseudokinase domain by the HSP90 co-chaperone Cdc37, which enables HSP90 to confer protein stabilisation, assist in late-stage folding and conformational modifications, and mediate intracellular transport.32, 33, 34, 35It has already been demonstrated that the necroptotic pathway is subject to modulation by HSP90. RIPK1 is well established as an HSP90 client protein, with a number of studies finding HSP90 inhibition affects both the stability and function of RIPK1 and promotes an apoptotic phenotype.36, 37, 38, 39, 40, 41 More recently, RIPK3 was also identified as an HSP90 client.2, 42, 43 Surprisingly, HSP90 inhibition did not markedly impact RIPK3 abundance or stability, but rather was essential for RIPK3''s necroptotic functions, such as phosphorylation of MLKL.42 However, whether MLKL itself is a client of HSP90 has not been investigated.In this study, using a phenotypic screen for small-molecule inhibitors of MLKL-driven cell death, we identified HSP90 as a modulator of necroptosis that functions on, or downstream of, the terminal effector, MLKL. HSP90 inhibition did not markedly reduce levels of MLKL in human U937 or mouse dermal fibroblasts, suggesting instead that HSP90 has an active role in governing MLKL-mediated cell death. This idea is supported by our finding that cell death driven by the S345D activated mutant of MLKL in Ripk3-deficient fibroblasts in the absence of necroptotic stimuli was suppressed by three distinct chemical classes of HSP90 inhibitor, but MLKL abundance was not impacted by HSP90 inhibition. Although our data indicate that MLKL binds HSP90 weakly or transiently, HSP90 activity was essential for the assembly of MLKL into high molecular weight complexes and the membrane translocation known to precede cell death. These findings suggest an expanded role for HSP90 in regulating necroptosis, and further our understanding of the mechanisms controlling MLKL-mediated cell death.  相似文献   

6.
7.
8.
9.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

10.
11.
12.
In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.Aerenchyma formation is a morphological adaptation of plants to complete submergence and waterlogging of the soil, and facilitates internal gas diffusion (Armstrong, 1979; Jackson and Armstrong, 1999; Colmer, 2003; Voesenek et al., 2006; Bailey-Serres and Voesenek, 2008; Licausi and Perata, 2009; Sauter, 2013; Voesenek and Bailey-Serres, 2015). To adapt to waterlogging in soil, rice (Oryza sativa) develops lysigenous aerenchyma in shoots (Matsukura et al., 2000; Colmer and Pedersen, 2008; Steffens et al., 2011) and roots (Jackson et al., 1985b; Justin and Armstrong, 1991; Kawai et al., 1998), which is formed by programmed cell death and subsequent lysis of some cortical cells (Jackson and Armstrong, 1999; Evans, 2004; Yamauchi et al., 2013). In rice roots, lysigenous aerenchyma is constitutively formed under aerobic conditions (Jackson et al., 1985b), and its formation is further induced under oxygen-deficient conditions (Colmer et al., 2006; Shiono et al., 2011). The former and latter are designated constitutive and inducible lysigenous aerenchyma formation, respectively (Colmer and Voesenek, 2009). The gaseous plant hormone ethylene regulates adaptive growth responses of plants to submergence (Voesenek and Blom, 1989; Voesenek et al., 1993; Visser et al., 1996a,b; Lorbiecke and Sauter, 1999; Hattori et al., 2009; Steffens and Sauter, 2009; van Veen et al., 2013). Ethylene also induces lysigenous aerenchyma formation in roots of some gramineous plants (Drew et al., 2000; Shiono et al., 2008). The treatment of roots with ethylene or its precursor (1-aminocyclopropane-1-carboxylic acid [ACC]) stimulates aerenchyma formation in rice (Justin and Armstrong, 1991; Colmer et al., 2006; Yukiyoshi and Karahara, 2014), maize (Zea mays; Drew et al., 1981; Jackson et al., 1985a; Takahashi et al., 2015), and wheat (Triticum aestivum; Yamauchi et al., 2014a,b). Moreover, treatment of roots with inhibitors of ethylene action or ethylene biosynthesis effectively blocks aerenchyma formation under hypoxic conditions in maize (Drew et al., 1981; Konings, 1982; Jackson et al., 1985a; Rajhi et al., 2011).Ethylene biosynthesis is accomplished by two main successive enzymatic reactions: conversion of S-adenosyl-Met to ACC by 1-aminocyclopropane-1-carboxylic acid synthase (ACS), and conversion of ACC to ethylene by 1-aminocyclopropane-1-carboxylic acid oxidase (ACO; Yang and Hoffman, 1984). The activities of both enzymes are enhanced during aerenchyma formation under hypoxic conditions in maize root (He et al., 1996). Since the ACC content in roots of maize is increased by oxygen deficiency and is strongly correlated with ethylene production (Atwell et al., 1988), ACC biosynthesis is essential for ethylene production during aerenchyma formation in roots. In fact, exogenously supplied ACC induced ethylene production in roots of maize (Drew et al., 1979; Konings, 1982; Atwell et al., 1988) and wheat (Yamauchi et al., 2014b), even under aerobic conditions. Ethylene production in plants is inversely related to oxygen concentration (Yang and Hoffman, 1984). Under anoxic conditions, the oxidation of ACC to ethylene by ACO, which requires oxygen, is almost completely repressed (Yip et al., 1988; Tonutti and Ramina, 1991). Indeed, anoxic conditions stimulate neither ethylene production nor aerenchyma formation in maize adventitious roots (Drew et al., 1979). Therefore, it is unlikely that the root tissues forming inducible aerenchyma are anoxic, and that the ACO-mediated step is repressed. Moreover, aerenchyma is constitutively formed in rice roots even under aerobic conditions (Jackson et al., 1985b), and thus, after the onset of waterlogging, oxygen can be immediately supplied to the apical regions of roots through the constitutively formed aerenchyma.Very-long-chain fatty acids (VLCFAs; ≥20 carbons) are major constituents of sphingolipids, cuticular waxes, and suberin in plants (Franke and Schreiber, 2007; Kunst and Samuels, 2009). In addition to their structural functions, VLCFAs directly or indirectly participate in several physiological processes (Zheng et al., 2005; Reina-Pinto et al., 2009; Roudier et al., 2010; Ito et al., 2011; Nobusawa et al., 2013; Tsuda et al., 2013), including the regulation of ethylene biosynthesis (Qin et al., 2007). During fiber cell elongation in cotton ovules, ethylene biosynthesis is enhanced by treatment with saturated VLCFAs, especially 24-carbon fatty acids, and is suppressed by an inhibitor of VLCFA biosynthesis (Qin et al., 2007). The first rate-limiting step in VLCFA biosynthesis is condensation of acyl-CoA with malonyl-CoA by β-ketoacyl-CoA synthase (KCS; Joubès et al., 2008). KCS enzymes are thought to determine the substrate and tissue specificities of fatty acid elongation (Joubès et al., 2008). The Arabidopsis (Arabidopsis thaliana) genome has 21 KCS genes (Joubès et al., 2008). In the Arabidopsis cut1 mutant, which has a defect in the gene encoding CUT1 that is required for cuticular wax production (i.e. one of the KCS genes), the expression of AtACO genes and growth of root cells were reduced when compared with the wild type (Qin et al., 2007). Furthermore, expression of the AtACO genes was rescued by exogenously supplied saturated VLCFAs (Qin et al., 2007). These observations imply that VLCFAs or their derivatives work as regulatory factors for gene expression during some physiological processes in plants.reduced culm number1 (rcn1) was first identified as a rice mutant with a low tillering rate in a paddy field (Takamure and Kinoshita, 1985; Yasuno et al., 2007). The rcn1 (rcn1-2) mutant has a single nucleotide substitution in the gene encoding a member of the ATP-binding cassette (ABC) transporter subfamily G, RCN1/OsABCG5, causing an Ala-684Pro substitution (Yasuno et al., 2009). The mutation results in several mutant phenotypes, although the substrates of RCN1/OsABCG5 have not been determined (Ureshi et al., 2012; Funabiki et al., 2013; Matsuda et al., 2014). We previously found that the rcn1 mutant has abnormal root morphology, such as shorter root length and brownish appearance of roots, under stagnant (deoxygenated) conditions (which mimics oxygen-deficient conditions in waterlogged soils). We also found that the rcn1 mutant accumulates less of the major suberin monomers originating from VLCFAs in the outer part of adventitious roots, and this results in a reduction of a functional apoplastic barrier in the root hypodermis (Shiono et al., 2014a).The objective of this study was to elucidate the molecular basis of inducible aerenchyma formation. To this end, we examined lysigenous aerenchyma formation and ACC, ethylene, and VLCFA accumulation and their biosyntheses in rcn1 roots. Based on the results of these studies, we propose that VLCFAs are involved in inducible aerenchyma formation through the enhancement of ethylene biosynthesis in rice roots.  相似文献   

13.
14.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

15.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

16.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

17.
To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed.When plants suffer from a mineral nutrient deficiency, they develop morphological and physiological responses (mainly in their roots) aimed to facilitate the uptake and mobilization of the limiting nutrient. After the nutrient has been acquired in enough quantity, these responses need to be switched off to avoid toxicity and conserve energy. In recent years, different plant hormones (e.g. ethylene, auxin, cytokinins, jasmonic acid, abscisic acid, brassinosteroids, GAs, and strigolactones) have been implicated in the regulation of these responses (Romera et al., 2007, 2011, 2015; Liu et al., 2009; Rubio et al., 2009; Kapulnik et al., 2011; Kiba et al., 2011; Iqbal et al., 2013; Zhang et al., 2014).Before the 1990s, there were several publications relating ethylene and nutrient deficiencies (cited in Lynch and Brown [1997] and Romera et al. [1999]) without establishing a direct implication of ethylene in the regulation of nutrient deficiency responses. In 1994, Romera and Alcántara (1994) published an article in Plant Physiology suggesting a role for ethylene in the regulation of Fe deficiency responses. In 1999, Borch et al. (1999) showed the participation of ethylene in the regulation of P deficiency responses. Since then, evidence has been accumulating in support of a role for ethylene in the regulation of both Fe (Romera et al., 1999, 2015; Waters and Blevins, 2000; Lucena et al., 2006; Waters et al., 2007; García et al., 2010, 2011, 2013, 2014; Yang et al., 2014) and P deficiency responses (Kim et al., 2008; Lei et al., 2011; Li et al., 2011; Nagarajan and Smith, 2012; Wang et al., 2012, 2014c). Both Fe and P may be poorly available in most soils, and plants develop similar responses under their deficiencies (Romera and Alcántara, 2004; Zhang et al., 2014). More recently, a role for ethylene has been extended to other deficiencies, such as K (Shin and Schachtman, 2004; Jung et al., 2009; Kim et al., 2012), S (Maruyama-Nakashita et al., 2006; Wawrzyńska et al., 2010; Moniuszko et al., 2013), and B (Martín-Rejano et al., 2011). Ethylene has also been implicated in both N deficiency and excess (Tian et al., 2009; Mohd-Radzman et al., 2013; Zheng et al., 2013), and its participation in Mg deficiency has been suggested (Hermans et al., 2010).In this update, we will review the information supporting a role for ethylene in the regulation of different nutrient deficiency responses. For information relating ethylene to other aspects of plant mineral nutrition, such as N2 fixation and responses to excess of nitrate or essential heavy metals, the reader is referred to other reviews (for review, see Maksymiec, 2007; Mohd-Radzman et al., 2013; Steffens, 2014).  相似文献   

18.
19.
20.
In 2008, clinical observations in our colony of sooty mangabeys (Cercocebus atys) suggested a high frequency of type 2 diabetes. Postmortem studies of diabetic animals revealed dense amyloid deposits in pancreatic islets. To investigate these findings, we screened our colony (97 male mangabeys; 99 female mangabeys) for the disease from 2008 to 2012. The overall prevalence of diabetes was 11% and of prediabetes was 7%, which is nearly double that reported for other primate species (less than 6%). Fructosamine and triglyceride levels were the best indicators of diabetes; total cholesterol and glycated hemoglobin were not associated with disease. Increasing age was a significant risk factor: prevalence increased from 0% in infants, juveniles, and young adults to 11% in adults and 19% in geriatric mangabeys. Sex, medroxyprogesterone acetate exposure, and SIV status were unrelated to disease. Weight was marginally higher in prediabetics, but body condition did not indicate obesity. Of the 49 mangabeys that were necropsied after clinical euthanasia or death from natural causes, 22 were diabetic; all 22 animals demonstrated pancreatic amyloid, and most had more than 75% of islets replaced with amyloid. We conclude that type 2 diabetes is more common in mangabeys than in other primate species. Diabetes in mangabeys has some unusual pathologic characteristics, including the absence of altered cholesterol levels and glycated hemoglobin but a robust association of pancreatic insular amyloidosis with clinical diabetes. Future research will examine the genetic basis of mangabey diabetes and evaluate additional diagnostic tools using imaging and serum markers.Abbreviations: HbA1c, glycated hemoglobin; MPA, medroxyprogesterone acetate; YNPRC, Yerkes National Primate Research CenterSooty mangabeys (Cercocebus atys) are Old World NHP that are native to West Africa. Historically their use in research has been limited to infectious disease studies, leprosy studies, and behavioral research.14,25 Over the past 20 to 30 y, they have been used in HIV–AIDS research. Mangabeys are natural hosts of SIVsmm, which is recognized as the origin of HIV2 infection in humans.7,8,30,36,42 SIV typically is nonpathogenic in mangabeys despite high levels of virus replication, which makes this species a unique and invaluable model in AIDS research.7,30,36,42 Our facility maintains a colony of approximately 200 sooty mangabeys. In 2008 clinical observations of relative hyperglycemia, glucosuria, and weight loss in our colony suggested that type 2 diabetes mellitus occurred at a relatively high frequency in this population. Spontaneous diabetes was found in 10% of the colony, and 5% of animals were prediabetic; this incidence is higher than that typically reported for other NHP species, such as cynomolgus macaques (less than 1% to 2%)22 and chimpanzees (less than 1%).37 The prevalence of spontaneous diabetes in humans is typically 8.3%.2,6,22,37 In addition, necropsies revealed that many affected animals had dense amyloid deposits in pancreatic islet cells. Insular amyloidosis was seen on histology, with a total replacement of islets by amyloid deposition in advanced diabetes. Advanced diabetes was determined by increased weight loss and severity of relative hyperglycemia. The increased clinical prevalence of diabetes in our mangabey colony prompted additional characterization of the clinicopathologic profile, risk factors, and prevalence of diabetes in our mangabey colony.The form of diabetes in this mangabey colony is characterized as type 2 diabetes mellitus, as they have hyperglycemia, hypertriglyceridemia, and islet amyloidosis. Type 2 diabetes mellitus is the most common of the 3 forms of diabetes, and has been documented in humans and NHP,22,31,37,55 including rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), Celebes crested macaques (Macaca nigra), bonnet macaques (Macaca radiate), pigtailed macaques (Macaca nemestrina), vervet monkeys (Chlorocebus pygerythrus), squirrel monkeys (Saimiri sciureus), chimpanzees (Pan troglodytes), and woolly monkeys (Lagothrix spp.).1,24,31,52,55 Type 2 diabetes is a chronic metabolic disorder in which insulin resistance occurs in liver, muscle, and adipose tissue. As type 2 diabetes progresses, it also can be characterized as a relative insulin deficiency.1,6,15,22,29,31,37,55 The initial clinical presentation of diabetes in humans and NHP includes polydipsia, polyuria, polyphagia, weight loss, and lethargy.1,6,22,27,31,37,55 Similar presentation was observed in our colony of diabetic mangabeys.Diagnostic criteria of diabetes in NHP species is similar to that for humans and is based on clinical symptoms and routine lab tests, including serum chemistry panel to evaluate persistent fasting hyperglycemia, hypertriglyceridemia, and hypercholesterolemia.2,6,11,16-18,21,22,29,31,37,48-50,52,55 Hypertriglyceridemia and hypercholesterolemia frequently are elevated due to diabetes and therefore are used as supportive diagnostic markers. In addition, the disease is characterized by transient hyperinsulinemia followed by insulin deficiency subsequent to glucose challenge. Urinalysis is used to evaluate glucosuria and ketonuria. These tests are not exclusive for diagnosing diabetes and can be inconsistent between species, thus making conclusive diagnosis challenging. For example, hyperglycemia can be a transient finding associated with recent food intake or stress associated with restraint for blood sample collection or anesthetic access, whereas hypertriglyceridemia can be seen in obese animals and those with other metabolic diseases such as pancreatitis and hypothyroidism.1,22,37,55The typical clinical approach to the diagnosis of diabetes in NHP and other veterinary patients includes evaluation of fructosamine and glycated hemoglobin (HbA1c) levels and glucose tolerance testing. These tests are indices of glycemic control and are used in clinical settings primarily to assess prognosis and response to treatment; they are also useful for the initial diagnosis of diabetes when used in parallel with serum chemistry markers. Fructosamine and HbA1c can both provide information on long-term glycemic control, because fructosamine reflects average blood glucose levels over 2 to 3 wk whereas HbA1c reflects average blood glucose over 2 to 3 mo preceding blood collection. HbA1c is the primary test for diabetes in human medicine,6,31,35,37 whereas fructosamine is commonly used in veterinary medicine. Glucose tolerance testing provides an indirect measure of insulin sensitivity, but it is not frequently used clinically in NHP because of the requirement for prolonged physical restraint or sedation.1,21,22,26,27,34,37,55Prevention and management of diabetes in NHP and humans can be achieved by identifying potential risk factors, including age, weight, sex, genetics, hormone drug exposure, and viral status.1,6,15,22,29,31,37,42,55 Advanced age, obesity, sex, and genetics are associated with diabetes in some species of NHP and humans.1,6,15,22,29,31,37,55 In addition, exposure to drugs such as medroxyprogesterone acetate (MPA) is suspected to be linked to diabetes due to the hormonal effects of progesterone impacting glucoregulatory function.1,6,10,22,23,31,34,55 MPA exposure is of interest, because it is used regularly in our mangabey colony as both a contraceptive and as therapy for endometriosis. In addition, SIV status is being evaluated as a risk factor, because a portion of our colony is SIV positive. Although HIV is not thought to be associated with diabetes in people, SIV pathogenesis in mangabeys differs; therefore it was of interest to explore the possible association of SIV and diabetes in mangabeys.7,30,36,42 Pancreatic insular amyloidosis has been documented to be associated with type 2 diabetes in several species. Amyloidosis is a group of disorders that are caused by extracellular deposition of misfolded proteins that can result in impaired function of any organ.15,20,23,28,32,43,45,48,49 Because a high incidence of pancreatic insular amyloid was noted at necropsy, we sought to document the relationship with clinical diabetes in mangabeys.Spontaneous type 2 diabetes mellitus has been well documented in several species of NHP. Because the literature contains little information regarding the clinicopathologic features (the ‘profile’), risk factors, and prevalence of spontaneous diabetes mellitus in sooty mangabeys, the primary aims of the current study were 1) to determine whether elevated levels of fasting blood glucose, fructosamine, HbA1c, triglycerides, and total cholesterol levels are reliable diagnostic markers of type 2 diabetes mellitus in this NHP species; 2) to determine whether age, sex, MPA exposure, and SIV status influence the risk of diabetes; 3) to determine whether body weight influences diabetic status; 4) to evaluate the relationship between pancreatic amyloidosis and diabetes mellitus; and 5) to characterize the prevalence of diabetes mellitus in the mangabey population at our institution. To our knowledge, this report is the first to describe the natural occurrence of type 2 diabetes mellitus within a captive colony of sooty mangabeys. We hypothesized that blood glucose, fructosamine, HbA1c, triglyceride, and total cholesterol would be reliable diagnostic markers and that age, sex, and MPA exposure would influence the risk of diabetes in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号