首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
2.
3.
4.
5.
6.
7.
We have previously isolated long-range acting enhancer elements from the HeLa genome by functional selection. In this report, the structural and functional characteristics of one (GA1) of the enhancers are reported. By cloning various restriction fragments and by deletion mutagenesis, the activity of GA1 was located in a 230-bp region. The nucleotide sequence of GA1 and genomic Southern blot analysis indicated that GA1 is derived from human papilloma virus (HPV) 18 DNA that had been integrated into the HeLa genome. The enhancer is located in the non-coding region of the HPV 18 genome. The HPV 18 enhancer consists of two functional domains, both of which have full enhancer activity in HeLa cells. The enhancer does not contain enhancer core sequences but contains several blocks of potential Z-DNA sequence. Like SV40 and polyoma virus enhancers, the activity of the HPV 18 enhancer was repressed by adenovirus E1a products. The HPV 18 enhancer shows a narrow cell type specificity: it is active in some cervical carcinoma cell lines, but inactive in all non-cervical cells except for one neuroblastoma cell line. These results suggest that the HPV 18 enhancer plays an important role in regulation of the viral genes.  相似文献   

8.
9.
10.
11.

Background

Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption.

Results

We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects.

Conclusions

Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0423-1) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.

Background

In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis.

Methodology/Principal Findings

Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis.

Conclusions/Significance

This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.  相似文献   

14.
Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD–associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.  相似文献   

15.
16.
17.
Critical functional properties are embedded in the non-coding portion of the human genome. Recent successful studies have shown that variations in distant-acting gene enhancer sequences can contribute to disease. In fact, various disorders, such as thalassaemias, preaxial polydactyly or susceptibility to Hirschsprung’s disease, may be the result of rearrangements of enhancer elements. We have analyzed the distribution of enhancer loci in the genome and compared their localization to that of previously described copy-number variations (CNVs). These data suggest a negative selection of copy number variable enhancers. To identify CNVs covering enhancer elements, we have developed a simple and cost-effective test. Here we describe the gene selection, design strategy and experimental validation of a customized oligonucleotide Array-Based Comparative Genomic Hybridization (aCGH), designated Enhancer Chip. It has been designed to investigate CNVs, allowing the analysis of all the genome with a 300 Kb resolution and specific disease regions (telomeres, centromeres and selected disease loci) at a tenfold higher resolution. Moreover, this is the first aCGH able to test over 1,250 enhancers, in order to investigate their potential pathogenic role. Validation experiments have demonstrated that Enhancer Chip efficiently detects duplications and deletions covering enhancer loci, demonstrating that it is a powerful instrument to detect and characterize copy number variable enhancers.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号